The Eulerian representations of Σ_{n} as restrictions of representations of Σ_{n+1}

Sarah Whitehouse*
Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK

Communicated by J.D. Stasheff; received 2 February 1995; revised 18 October 1995

Abstract

We show that each Eulerian representation of Σ_{n} is the restriction of a representation of Σ_{n+1}. We describe the new representations, giving character formulae, and identify the one which restricts to the first Eulerian representation as the tree representation.

1991 Math. Subj. Class.: 20C30, 05E10, 13D03

0. Introduction

The Eulerian idempotents $e_{n}^{(j)}$, for $j=1, \ldots, n$, lying in the rational group algebra of the symmetric group $\mathbb{Q} \Sigma_{n}$, were defined by Gerstenhaber and Schack as follows [3]. An $(i, n-i)$-shuffle in Σ_{n} is a permutation π such that $\pi(1)<\pi(2)<\ldots<\pi(i)$ and $\pi(i+1)<\pi(i+2)<\ldots<\pi(n)$. Let $s_{i, n-i}=\sum(\operatorname{sgn} \pi) \pi \in \mathbb{Q} \Sigma_{n}$, where the sum is over ($i, n-i$)-shuffles in Σ_{n}, and let $s_{n}=\sum_{i=1}^{n-1} s_{i, n-i} \in \mathbb{Q} \Sigma_{n}$. Now s_{n} has minimum polynomial $\prod_{j=1}^{n}\left(x-\mu_{j}\right)$, where $\mu_{j}=2^{j}-2$. Then define

$$
e_{n}^{(j)}=\prod_{i \neq j} \frac{s_{n}-\mu_{i}}{\left(\mu_{j}-\mu_{i}\right)}
$$

The $e_{n}^{(j)}$'s for $j=1, \ldots, n$ form a family of mutually orthogonal idempotents such that $\sum_{j=1}^{n} e_{n}^{(j)}=1$ [3, Theorem 1.2].

These idempotents provide decompositions of Hochschild and cyclic homology of a commutative algebra over a ground ring which contains $\mathbb{Q}[3,8]$. We briefly recall the definitions since in particular we will need a property of Connes' B map later.

[^0]For A an associative algebra over k and M an A-bimodule, the Hochschild complex is $C_{n}(A ; M)=M \otimes A^{\otimes n}$, with boundary $b: C_{n}(A ; M) \rightarrow C_{n-1}(A ; M)$ given by

$$
\begin{aligned}
b\left(m \otimes a_{1} \otimes \cdots \otimes a_{n}\right)= & \left(m a_{1} \otimes a_{2} \otimes \cdots \otimes a_{n}\right) \\
& +\sum_{i=1}^{n-1}(-1)^{t}\left(m \otimes a_{1} \otimes \cdots \otimes a_{i} a_{i+1} \otimes \cdots \otimes a_{n}\right) \\
& +(-1)^{n}\left(a_{n} m \otimes a_{1} \otimes \cdots \otimes a_{n-1}\right) .
\end{aligned}
$$

Here \otimes denotes \otimes_{k}. The Hochschild homology of A with coefficients in M, denoted $H H_{n}(A ; M)$, is the homology of this chain complex. The symmetric group Σ_{n} acts on the left on $C_{n}(A ; M)$ by

$$
\sigma\left(m \otimes a_{1} \otimes \ldots \otimes a_{n}\right)=\left(m \otimes a_{\sigma^{-1}(1)} \otimes \ldots \otimes a_{\sigma^{-1}(n)}\right),
$$

and this extends linearly to an action of the group algebra $k \Sigma_{n}$. Then if A is commutative and the ground ring k contains \mathbb{Q}, the Eulerian idempotents commute with the Hochschild boundary map $b, b e_{n}^{(j)}=e_{n-1}^{(j)} b$, so that they yield a decomposition of Hochschild homology. The first part of this decomposition, given by the idempotents $e_{n}^{(1)}$, is Harrison homology [3].

Letting $\bar{A}=A / k$, we may define the cyclic homology of A over k, denoted $H C_{*}(A)$, as the homology of the total complex corresponding to the normalised $(b-B)$ bicomplex:

where $B: A \otimes A^{-® n} \rightarrow A \otimes A^{-(n+1)}$ is defined by

$$
\begin{aligned}
& B\left(a_{1} \otimes a_{2} \otimes \ldots \otimes a_{n+1}\right) \\
& \quad=\sum_{j=1}^{n+1}(-1)^{n(j-1)}\left(1 \otimes a_{j} \otimes a_{j+1} \otimes \ldots \otimes a_{n+1} \otimes a_{1} \otimes a_{2} \otimes \ldots \otimes a_{j-1}\right) .
\end{aligned}
$$

Now, for a commutative algebra A, over a ground ring k containing \mathbb{Q}, the Eulerian idempotents are well-behaved with respect to B as well as $b, B e_{n-1}^{(j-1)}=e_{n}^{(j)} B$, so that they decompose cyclic homology [8, 4.6.7].

The representation of Σ_{n} given by the right ideal $e_{n}^{(j)} Q \Sigma_{n}$, which we denote by $E_{n}^{(j)}$, has been studied by Hanlon, who gives a character formula [5]. We show that this representation is the restriction of a representation of Σ_{n+1}, denoted $F_{n+1}^{(j)}$, given by a closely related idempotent $f_{n \nmid 1}^{(j)}$ in $\mathbb{Q} \Sigma_{n+1}$. By first finding a simplified formula for the product $e_{n}^{(j)} e_{n+1}^{(j)}$ in $\mathbb{Q} \Sigma_{n+1}$, we give a description of the representation $F_{n+1}^{(j)}$ as a virtual representation:

$$
F_{n+1}^{(j)} \oplus \bigoplus_{i=1}^{j} E_{n+1}^{(i)} \cong \bigoplus_{i=1}^{j} \operatorname{In} d_{\Sigma_{n}}^{\Sigma_{n+1}} E_{n}^{(i)} .
$$

This leads to a character formula using Hanlon's results. In the case $j=1, F_{n+1}^{(1)}$ is the tree representation [11].

1. The idempotents $\boldsymbol{f}_{n+1}^{(j)}$

We denote by λ_{n+1} the $n+1$ cycle $(12 \ldots n+1)$ in Σ_{n+1} and let $\Lambda_{n+1}=$ $\frac{1}{n+1} \sum_{i=0}^{n}\left(\operatorname{sgn} \lambda_{n+1}^{i}\right) \lambda_{n+1}^{i} \in \mathbb{Q} \Sigma_{n+1}$. We will always regard Σ_{n} as contained in Σ_{n+1} as the subgroup of permutations fixing $n+1$, and similarly $\mathbb{Q} \Sigma_{n} \subset \mathbb{Q} \Sigma_{n+1}$.

Proposition 1.1. $\Lambda_{n+1} s_{n}=s_{n} \Lambda_{n+1}$.
Proof. A typical term on the right-hand side of this equation is $\pi \lambda_{n+1}^{j}$, appearing with sign, $\operatorname{sgn}(\pi) \cdot \operatorname{sgn}\left(\lambda_{n+1}^{j}\right)=\operatorname{sgn}\left(\pi \lambda_{n+1}^{j}\right)$, where π is some shuffle in Σ_{n}. Now we may write $\pi \lambda_{n+1}^{j}=\lambda_{n+1}^{\pi(j)} \pi^{\prime}$, where $\pi^{\prime}=\lambda_{n+1}^{-\pi(j)} \pi \lambda_{n+1}^{j}$ is in Σ_{n}. Let $\theta_{j}: \Sigma_{n} \rightarrow \Sigma_{n}$ be defined by $\theta_{j}(\pi)=\lambda_{n+1}^{-\pi(j)} \pi \lambda_{n+1}^{j}$. When $j=n+1$ we simply have the identity map, and for $j=n$ it was proved by Natsume and Schack that θ_{n} is a bijection which takes shuffles to shuffles [9, Lemma 9]. Since it is easily checked that $\theta_{n-k}=\left(\theta_{n}\right)^{k+1}$, the same holds for each θ_{j}. So each term of the right-hand side, $\pi \lambda_{n+1}^{j}$ with sign, appears in the left-hand side as $\lambda_{n+1}^{\pi(j)} \pi^{\prime}$, with π^{\prime} a shuffle, and with $\operatorname{sign} \operatorname{sgn}\left(\lambda_{n+1}^{\pi(j)}\right) \operatorname{sgn}\left(\pi^{\prime}\right)=$ $\operatorname{sgn}\left(\lambda_{n+1}^{\pi(j)} \pi^{\prime}\right)=\operatorname{sgn}\left(\pi \lambda_{n+1}^{j}\right)$.

Corollary 1.2. $\Lambda_{n+1} e_{n}^{(j)}=e_{n}^{(j)} \Lambda_{n+1}$ for $j=1, \ldots, n$.
Proof. Each $e_{n}^{(j)}$ is a polynomial in s_{n}, so this is immediate from the above.
Thus, $\Lambda_{n+1} e_{n}^{(j)}$ is an idempotent in $\mathbb{Q} \Sigma_{n+1}$.
Definition 1.3. We denote by $f_{n+1}^{(j)}$ the idempotent element $\Lambda_{n+1} e_{n}^{(j)}$ in $\mathbb{Q} \Sigma_{n+1}$, for $j=1, \ldots, n$. We let $E_{n}^{(j)}$ and $F_{n}^{(j)}$ denote the $\mathbb{Q} \Sigma_{n}$-modules $e_{n}^{(j)} \mathbb{Q} \Sigma_{n}$ and $f_{n}^{(j)} \mathbb{Q} \Sigma_{n}$, respectively.

Proposition 1.4. The representation $F_{n+1}^{(j)}$ of Σ_{n+1} when restricted to a representation of Σ_{n} is isomorphic to $E_{n}^{(j)}$.

Proof. Consider the homomorphism of right $\mathbb{Q} \Sigma_{n}$-modules $\theta: E_{n}^{(j)} \rightarrow F_{n+1}^{(j)}$ given by left multiplication by Λ_{n+1}. Now since Λ_{n+1} and $e_{n}^{(j)}$ commute, and since we may write $\pi \in \Sigma_{n+1}$ uniquely as $\lambda_{n+1}^{i} \pi^{\prime}$ for some i and some $\pi^{\prime} \in \Sigma_{n}$, we have $\Lambda_{n+1}\left(\operatorname{sgn} \lambda_{n+1}^{i}\right) e_{n}^{(j)} \pi^{\prime}=\left(\operatorname{sgn} \lambda_{n+1}^{i}\right) f_{n+1}^{(j)} \pi^{\prime}=f_{n+1}^{(j)} \lambda_{n+1}^{i} \pi^{\prime}=f_{n+1}^{(j)} \pi$. Hence, the homomorphism of right $\mathbb{Q} \Sigma_{n}$-modules which is given by $f_{n+1}^{(j)} \pi \mapsto\left(\operatorname{sgn} \hat{\lambda}_{n+1}^{i}\right) e_{n}^{(j)} \pi^{\prime}$ for $\pi \in$ Σ_{n+1} as above, is an inverse for θ. So $F_{n+1}^{(j)}$ and $E_{n}^{(j)}$ are isomorphic as $\mathbb{Q} \Sigma_{n}$-modules as required.

Proposition 1.5.

$$
\bigoplus_{j=1}^{n} F_{n+1}^{(j)} \cong I n d_{<\lambda_{n}, 1>}^{\Sigma_{n+1}}(\varepsilon),
$$

where ε denotes the sign representation of the cyclic subgroup $\left\langle\lambda_{n+1}\right\rangle$ of Σ_{n+1}.

Proof.

$$
\sum_{j=1}^{n} f_{n+1}^{(j)}=\Lambda_{n+1} \sum_{j=1}^{n} e_{n}^{(j)}=\Lambda_{n+1}
$$

since $\sum_{j=1}^{n} e_{n}^{(j)}=1$ [3, Theorem 1.2]. So the sum of the representations $F_{n+1}^{(j)}$ is $\Lambda_{n+1} \mathbb{Q} \Sigma_{n+1}$. Since A_{n+1} is the standard idempotent for the sign representation of the cyclic subgroup of Σ_{n+1} generated by $\lambda_{n+1}, \Lambda_{n+1} \mathbb{Q} \perp \Sigma_{n+1}$ is the claimed induced representation.

2. A relation between $e_{n}^{(j)}$ and $e_{n+1}^{(j)}$

In this section we prove certain relations among the $e_{n}^{(j)}$'s and $f_{n}^{(j)}$'s, which will be needed in the following section to give descriptions of our representations. The main result is Proposition 2.5, giving a simplification of the product $e_{n}^{(j)} e_{n+1}^{(j)}$. We adopt the convention that $f_{n}^{(k)}=e_{n}^{(k)}=0$ whenever $k \leq 0$ or $k>n$.

Lemma 2.1. $f_{n+1}^{(j-1)}=e_{n+1}^{(j)} A_{n+1}$, for $j=1, \ldots, n+1$.
Proof. We need to show that $\Lambda_{n+1} e_{n}^{(j-1)}=e_{n+1}^{(j)} \Lambda_{n+1}$. We start from Loday's relation $B e_{n}^{(j-1)}=e_{n+1}^{(j)} B[8$, Theorem 4.6.6] where B is Connes' boundary operator in the normalised setting. We may write B as $(n+1) s \Lambda_{n+1}$, where s is the standard extra degeneracy operator, $s\left(a_{1} \otimes a_{2} \otimes \ldots \otimes a_{n+1}\right)=\left(1 \otimes a_{1} \otimes a_{2} \otimes \ldots \otimes a_{n+1}\right)$ [8, 1.1.12]. So we have $(n+1) s \Lambda_{n \mid 1} \rho_{n}^{(J-1)}=(n+1) \rho_{n+1}^{(j)} s \Lambda_{n \mid 1}$. Since the action of $e_{n+1}^{(j)}$ here is on the last $n+1$ places, leaving the first unaffected, $e_{n+1}^{(j)} s \Lambda_{n+1}=s e_{n+1}^{(j)} \Lambda_{n+1}$. So $\Lambda_{n+1} e_{n}^{(j-1)}=e_{n+1}^{(j)} \Lambda_{n+1}$ as required.

Corollary 2.2. $F_{n+1}^{(j-1)} \subset E_{n+1}^{(j)}$, for $j=1, \ldots, n+1$.

Note that, since $F_{n+1}^{(j-1)}$ restricts to $E_{n}^{(j-1)}$, to understand the $E_{n}^{(j)}$,s it is sufficient to understand these submodules.

Since the group algebra $\mathbb{Q} \Sigma_{n+1}$ is semi-simple, we may write

$$
E_{n+1}^{(j)}=F_{n+1}^{(J-1)} \oplus x \mathbb{Q} \Sigma_{n+1}
$$

for some $x \in \mathbb{Q} \Sigma_{n+1}$.
Notation. Let $p_{n}=(1 n)(2 n-1)(3 n-2) \ldots \in \Sigma_{n}$ and let $o p_{n}=(-1)^{n(n+1) / 2} p_{n}=$ $(-1)^{n}\left(\operatorname{sgn} p_{n}\right) p_{n} \in \mathbb{Q} \Sigma_{n}$. Now consider the idempotents $\sigma_{n}^{(j)}=\frac{1}{2}\left(1+(-1)^{j} o p_{n}\right)$ in $\mathbb{Q} \Sigma_{\dot{n}}$. These two idempotents correspond to the sums of the even and odd Eulerian idempotents:

$$
\sigma_{n}^{(j)}=\sum_{i \equiv j(\bmod 2)} e_{n}^{(i)}
$$

by [3]. In particular, $\sigma_{n}^{(j)}$ (and, hence, p_{n}) is a polynomial in s_{n}. Of course, since the $e_{n}^{(i)}$'s are mutually orthogonal,

$$
e_{n}^{(i)} \sigma_{n}^{(j)}=\sigma_{n}^{(j)} e_{n}^{(i)}= \begin{cases}e_{n}^{(i)} & \text { if } i \equiv j(\bmod 2) \\ 0 & \text { otherwise }\end{cases}
$$

Let $s_{n+1}^{*}=\sum(\operatorname{sgn} \pi) \pi$, where the sum is over shuffles in Σ_{n+1} which do not fix $n+1$. So we may write $s_{n+1}=1+s_{n}+s_{n+1}^{*}$.

Lemma 2.3. $\left(1+s_{n+1}^{*}\right) \sigma_{n+1}^{(j)}=\sigma_{n}^{(j+1)}\left(1+s_{n+1}^{*}\right)$.
Proof. Equivalently, we show $p_{n}\left(1+s_{n+1}^{*}\right) p_{n+1}=(-1)^{n}\left(1+s_{n+1}^{*}\right)$. Firstly, on the lefthand side we have $p_{n} p_{n+1}=\lambda_{n+1}^{-1}$, and since this is a 1 -shuffle with $\lambda_{n+1}^{-1}(1)=n+1$, it also appears in the right-hand side. Any other term on the left-hand side has the form $(\operatorname{sgn} \pi) p_{n} \pi p_{n+1}$ where π is some k-shuffle in Σ_{n+1} not fixing $n+1$. Then $\pi(k)=n+1$, and it is easy to see that $p_{n} \pi p_{n+1}$ is an $(n+2-k)$-shuffle taking $(n+2-k)$ to $n+1$. (In the case $k=1$, we must have $\pi=i_{n+1}^{-1}$, and we get $p_{n} \pi p_{n+1}=1$.) Since $\operatorname{sgn}\left(p_{n} \pi p_{n+1}\right)=(-1)^{n} \operatorname{sgn}(\pi)$, the result follows.

Lemma 2.4. $e_{n}^{(j)} \sigma_{n+1}^{(j)}\left(s_{n+1}-\mu_{j}\right)=0$.

Proof.

$$
\begin{aligned}
e_{n}^{(j)} \sigma_{n+1}^{(j)}\left(s_{n+1}-\mu_{j}\right) & =e_{n}^{(j)}\left(s_{n+1}-\mu_{j}\right) \sigma_{n+1}^{(j)} \\
& =e_{n}^{(j)}\left(1+s_{n}+s_{n+1}^{*}-\mu_{j}\right) \sigma_{n+1}^{(j)} \\
& =e_{n}^{(j)}\left(s_{n}-\mu_{j}\right) \sigma_{n+1}^{(j)}+e_{n}^{(i)}\left(1+s_{n+1}^{*}\right) \sigma_{n+1}^{(j)} \\
& =e_{n}^{(j)}\left(1+s_{n+1}^{*}\right) \sigma_{n+1}^{(j)} \\
& =e_{n}^{(j)} \sigma_{n}^{(j+1)}\left(1+s_{n+1}^{*}\right) \quad \text { by Lemma } 2.3 \\
& =0 .
\end{aligned}
$$

Proposition 2.5. $e_{n}^{(j)} e_{n+1}^{(j)}=e_{n}^{(j)} \sigma_{n+1}^{(j)}$.
Proof. Recall that the minimum polynomial of s_{n+1} is $\prod_{j=1}^{n+1}\left(x-\mu_{j}\right)$, where $\mu_{j}=2^{j}-2$. So right multiplication by s_{n+1} is an operator on the subspace of $\mathbb{Q} \Sigma_{n+1}$ spanned by $1, s_{n+1}, \ldots, s_{n+1}^{n}$. It has $n+1$ distinct eigenvalues $\mu_{1}, \ldots, \mu_{n+1}$ and it follows from the definition of the Eulerian idempotents that right multiplication by $e_{n+1}^{(j)}$ is projection onto the eigenspace corresponding to eigenvalue μ_{j}. So, by Lemma 2.4, $e_{n}^{(j)} \sigma_{n+1}^{(j)}$ is contained in the left ideal $\mathbb{Q} \Sigma_{n+1}\left(e_{n+1}^{(j)}\right)$. Hence, $e_{n}^{(j)} \sigma_{n+1}^{(j)}=e_{n}^{(j)} \sigma_{n+1}^{(j)} e_{n+1}^{(j)}$. But $\sigma_{n+1}^{(j)} e_{n+1}^{(j)}=e_{n+1}^{(j)}$.

In fact, using the same method, one can also show that $e_{n}^{(j)} e_{n+1}^{(j)}=\sigma_{n}^{(j)} e_{n+1}^{(j)}$.

3. $F_{n+1}^{(j)}$ as a virtual representation

The main result of this section is Theorem 3.4, giving a description of the representation $F_{n+1}^{(j)}$.

Definition 3.1. We define certain elements of the group algebra $\mathbb{Q} \Sigma_{n+1}$:

$$
x_{n+1}^{(j)}=\frac{2}{n+1}\left((n-1)+(-1)^{j} o p_{n}+\sum_{i=3}^{n}(i-2)(-1)^{n i} \lambda_{n+1}^{i}\right) .
$$

Lemma 3.2.

$$
\begin{aligned}
(1 & \left.+(-1)^{n+1} \lambda_{n+1}^{-1}\right) x_{n+1}^{(j)} \\
& =\frac{2}{n+1}\left((n-1)+(-1)^{j} o p_{n}+(-1)^{n+j-1} \lambda_{n+1}^{-1} o p_{n}-\sum_{i=2}^{n}(-1)^{n i} \lambda_{n+1}^{i}\right) .
\end{aligned}
$$

Proposition 3.3. $e_{n}^{(j)} e_{n+1}^{(j)} x_{n+1}^{(j)}-\left(1-\Lambda_{n+1}\right) e_{n}^{(j)}$.
Proof. We will use $e_{n}^{(j)}=(-1)^{j} e_{n}^{(j)} o p_{n}$ and $o p_{n} o p_{n+1}=(-1)^{n+1} \lambda_{n+1}^{-1}$. Now

$$
\begin{aligned}
e_{n}^{(j)} e_{n+1}^{(j)} x_{n+1}^{(j)} & =e_{n}^{(j)} \sigma_{n+1}^{(j)} x_{n+1}^{(j)} \quad \text { by Proposition } 2.5 \\
& =\frac{1}{2} e_{n}^{(j)}\left(1+(-1)^{j} o p_{n+1}\right) x_{n+1}^{(j)} \\
& =\frac{1}{2} e_{n}^{(j)}\left(1+o p_{n} o p_{n+1}\right) x_{n+1}^{(j)} \\
& =\frac{1}{2} e_{n}^{(j)}\left(1+(-1)^{n+1} \lambda_{n+1}^{-1}\right) x_{n+1}^{(j)}
\end{aligned}
$$

So

$$
\begin{aligned}
e_{n}^{(j)} e_{n+1}^{(j)} x_{n+1}^{(j)}= & \frac{e_{n}^{(j)}}{n+1}\left((n-1)+(-1)^{j} o p_{n}+(-1)^{n+j-1} \lambda_{n+1}^{-1} o p_{n}\right. \\
& \left.-\sum_{i-2}^{n}(-1)^{n i} \lambda_{n+1}^{i}\right) \\
= & \frac{e_{n}^{(j)}}{n+1}\left(n+(-1)^{n+1} o p_{n} \lambda_{n+1}^{-1} o p_{n}-\sum_{i=2}^{n}(-1)^{n i} \lambda_{n+1}^{i}\right) \\
= & \frac{e_{n}^{(j)}}{n+1}\left(n+(-1)^{n+1} \lambda_{n+1}-\sum_{i=2}^{n}(-1)^{n i} \lambda_{n+1}^{i}\right) \\
= & \frac{e_{n}^{(j)}}{n+1}\left(n-\sum_{i=1}^{n}(-1)^{n i} \lambda_{n+1}^{i}\right) \\
= & e_{n}^{(j)}\left(1-\Lambda_{n+1}\right) \\
= & \left(1-\Lambda_{n+1}\right) e_{n}^{(j)} \quad \text { by Corollary 1.2. }
\end{aligned}
$$

Now we can prove the main result. We will use the fact that given an idempotent e in $\mathbb{Q} \Sigma_{n}$, giving a representation $e \mathbb{Q} \Sigma_{n}$ of Σ_{n}, then the induced representation of Σ_{n+1} is given by $e \mathbb{Q} \Sigma_{n+1}$. We also need the result, due to Hanlon, that the dimension of the representation $E_{n}^{(j)}$ is $s(n, j)$, the number of permutations in Σ_{n} with exactly j cycles [5].

Theorem 3.4.

$$
F_{n+1}^{(j)} \oplus \bigoplus_{i=1}^{j} E_{n+1}^{(i)} \cong \bigoplus_{i=1}^{j} \operatorname{Ind}{\Sigma_{n}}_{\Sigma_{n+1}} E_{n}^{(i)} .
$$

Proof. The result will be proved by induction on j. First, we consider the case $j=1$. Here we need to show that $F_{n+1}^{(1)} \oplus E_{n+1}^{(1)} \cong \operatorname{Ind} \sum_{\Sigma_{n}}^{\Sigma_{n+1}} E_{n}^{(1)}$. That is,

$$
F_{n+1}^{(1)} \oplus E_{n+1}^{(1)} \cong e_{n}^{(1)} \mathbb{Q} \Sigma_{n+1}
$$

Now it is clear that

$$
\begin{aligned}
e_{n}^{(1)} \mathbb{Q} \Sigma_{n+1} & =\Lambda_{n+1} e_{n}^{(1)} \mathbb{Q} \Sigma_{n+1} \oplus\left(1-\Lambda_{n+1}\right) e_{n}^{(1)} \mathbb{Q} \Sigma_{n+1} \\
& =F_{n+1}^{(1)} \oplus\left(1-\Lambda_{n+1}\right) e_{n}^{(1)} \mathbb{Q} \Sigma_{n+1} .
\end{aligned}
$$

So we must show that $\left(1-\Lambda_{n+1}\right) e_{n}^{(1)} \mathbb{Q} \Sigma_{n+1} \cong E_{n+1}^{(1)}$, that is $\left(1-\Lambda_{n+1}\right) e_{n}^{(1)} \mathbb{Q} \Sigma_{n+1} \cong$ $e_{n+1}^{(1)} \mathbb{Q} \Sigma_{n+1}$. Using the fact that $E_{n}^{(1)}$ has dimension $(n-1)$!, we see that both of these modules have dimension $n!$. We define

$$
0: e_{n+1}^{(1)} \mathbb{Q} \Sigma_{n+1} \rightarrow\left(1-\Lambda_{n+1}\right) e_{n}^{(1)} \mathbb{Q} \Sigma_{n+1}
$$

to be the homomorphism of right $\mathbb{Q} \Sigma_{n+1}$-modules given by left-multiplication by the element $\left(1-A_{n+1}\right) e_{n}^{(1)}$. Then

$$
\left(1-\Lambda_{n+1}\right) e_{n}^{(1)}=e_{n}^{(1)} e_{n+1}^{(1)} x_{n+1}^{(1)}=\left(1-\Lambda_{n+1}\right) e_{n}^{(1)} e_{n+1}^{(1)} x_{n+1}^{(1)}=\theta\left(e_{n+1}^{(1)} x_{n+1}^{(1)}\right),
$$

by Proposition 3.3. Thus, θ is surjective, and so an isomorphism, giving the result for $j=1$. Note that this identifies $E_{n+1}^{(1)}$ with the submodule $e_{n}^{(1)}\left(1-\Lambda_{n+1}\right) \mathbb{Q} \Sigma_{n+1}$ of $e_{n}^{(1)} \mathbb{Q} \Sigma_{n+1}$.

Now we assume the result for $j-1$ and consider j. Using the induction hypothesis it is sufficient to show that $\Gamma_{n+1}^{(j)} \oplus E_{n+1}^{(j)} \simeq F_{n+1}^{(j-1)} \oplus \operatorname{In} d_{\Sigma_{n}}^{\Sigma_{n+1}} E_{n}^{(j)}$. That is,

$$
\Lambda_{n+1} e_{n}^{(j)} \mathbb{Q} \Sigma_{n+1} \oplus E_{n+1}^{(j)} \cong F_{n+1}^{(j-1)} \oplus e_{n}^{(j)} \mathbb{Q} \Sigma_{n+1} .
$$

Now, we clearly have

$$
e_{n}^{(j)} \mathbb{Q} \Sigma_{n+1}=\Lambda_{n+1} e_{n}^{(j)} \mathbb{Q} \Sigma_{n+1} \oplus\left(1-\Lambda_{n+1}\right) e_{n}^{(j)} \mathbb{Q} \Sigma_{n+1},
$$

so we must show that $E_{n+1}^{(j)} \cong F_{n+1}^{(j-1)} \oplus\left(1-\Lambda_{n+1}\right) e_{n}^{(j)} \mathbb{Q} \Sigma_{n+1}$. By Corollary 2.2, $E_{n+1}^{(j)}=F_{n+1}^{(j-1)} \oplus x \mathbb{Q} \Sigma_{n+1}$. Hence, the above simplifies to showing that $x \mathbb{Q} \Sigma_{n+1} \cong$ $\left(1-\Lambda_{n+1}\right) e_{n}^{(j)} \mathbb{Q} \Sigma_{n+1}$. We define $\theta: E_{n+1}^{(j)} \rightarrow\left(1-\Lambda_{n+1}\right) e_{n}^{(j)} \mathbb{Q} \Sigma_{n+1}$ to be the homomorphism of right $\mathbb{Q} \Sigma_{n+1}$-modules given by left-multiplication by $\left(1-\Lambda_{n+1}\right) e_{n}^{(i)}$. By Corollary 1.2, $\left(1-\Lambda_{n+1}\right) e_{n}^{(j)} \Lambda_{n+1} e_{n}^{(j-1)}=0$, so $F_{n+1}^{(j-1)} \subset \operatorname{Ker} \theta$. Hence, θ induces a $\mathbb{Q} \Sigma_{n+1}$-module homomorphism: $\theta^{\prime}: x \mathbb{Q} \Sigma_{n+1} \rightarrow\left(1-\Lambda_{n+1}\right) e_{n}^{(j)} \mathbb{Q} \Sigma_{n+1}$. Next, we check the dimensions of these $\mathbb{Q} \Sigma_{n+1}$-modules. We have seen in Proposition 1.4 that $F_{n+1}^{(j)}$ restricts to $E_{n}^{(j)}$, so has the same dimension, $s(n, j)$. So $x \mathbb{Q} \Sigma_{n+1}$ has dimension $s(n+1, j)-s(n, j-1)$, and $\left(1-\Lambda_{n+1}\right) e_{n}^{(j)} \mathbb{Q} \Sigma_{n+1}$ has dimension $(n+1) s(n, j)-s(n, j)=$ $n s(n, j)$. Since $s(n+1, j)=s(n, j-1)+n s(n, j)$, (see [4, p. 261, Eq. (6.8)], the two modules do have the same dimension. Hence, it is sufficient to show that θ^{\prime} is surjective to conclude that it is a $\mathbb{Q} \Sigma_{n+1}$-module isomorphism. But,

$$
\begin{aligned}
\left(1-\Lambda_{n+1}\right) e_{n}^{(j)} & =e_{n}^{(j)} e_{n+1}^{(j)} x_{n+1}^{(j)} \quad \text { by Proposition } 3.3 \\
& =\left(1-\Lambda_{n+1}\right) e_{n}^{(j)} e_{n+1}^{(j)} x_{n+1}^{(j)} \quad \text { since } 1-\Lambda_{n+1} \text { is an idempotent } \\
& =\theta^{\prime}\left(e_{n+1}^{(j)} x_{n+1}^{(j)}\right)
\end{aligned}
$$

Hence, θ^{\prime} is surjective.
Notation. Let Ψ_{n+1}^{j} denote the character of the representation $F_{n+1}^{(j)}$ of Σ_{n+1} and let χ_{n}^{j} denote the character of the representation $E_{n}^{(j)}$ of Σ_{n}.

Corollary 3.5.

$$
\Psi_{n+1}^{j}=\sum_{i=1}^{j} I n d_{\Sigma_{n}}^{\Sigma_{n+1}}\left(\chi_{n}^{i}\right)-\sum_{i=1}^{j} \chi_{n+1}^{i} .
$$

We give the formula for the character Ψ_{n+1}^{1} explicitly.

Corollary 3.6. For $g \in \Sigma_{n+1}$,

$$
\Psi_{n+1}^{\prime}(g)= \begin{cases}(-1)^{n+s}(s-1)!(r)^{s-1} \mu(r) & \text { if g has cycle type }(r)^{s} \text { with } \\ 0 & r>1, \text { or }(r)^{s}(1) \\ 0 & \text { if g has any other cycle type. }\end{cases}
$$

Proof. We have shown that $\Psi_{n+1}^{1}=\operatorname{In} d_{\Sigma_{n}}^{\sum_{n+1}}\left(\chi_{n}^{1}\right)-\chi_{n+1}^{1}$. The result is a straightforward induced character calculation from Hanlon's result: $\chi_{n}^{1}=\varepsilon \cdot\left(\operatorname{In} d_{C_{n}}^{\Sigma_{n}} \rho_{n}\right)$, where ρ_{n} is a faithful linear character of the cyclic subgroup of Σ_{n+1} generated by an n-cycle and ε is the alternating character [5].

It is shown in [11] that this is exactly the character of the tree representation of Σ_{n+1}. This representation arises in Γ-homology, $H \Gamma_{*}$, a homology theory for E_{∞}-ring spectra, introduced by Robinson in [10], which specialises to a new homology theory for commutative algebras. Let B be a flat commutative algebra over a commutative ground ring A and M a B-module. An application of our results allows us to prove that when the ground ring A contains \mathbb{Q}, Γ-homology agrees with Harrison homology, $H \Gamma_{p}(B / A ; M) \cong \operatorname{Harr}_{p+1}(B / A ; M)$. (In general, the theories are different.) Since the definition of Γ-homology is rather long, here we only outline the idea of the proof. The result was announced in [14] and will appear elsewhere.

There is a first quadrant spectral sequence converging to Γ-homology,

$$
\varepsilon_{p, q}^{1}=M \otimes \operatorname{Tor}_{q}^{A \Sigma_{p+1}}\left(V_{p+1}, B^{\otimes p+1}\right) \underset{p}{\Longrightarrow} H \Gamma_{p+q}(B / A ; M),
$$

where V_{p+1} denotes the restriction to Σ_{p+1} of the tree representation of Σ_{p+2}. When A contains \mathbb{Q} the spectral sequence collapses to the edge and, by Proportion 1.4, V_{p+1} is isomorphic to $E_{p+1}^{(1)}$. Then Γ-homology is the homology of a complex

$$
M \otimes E_{p+1}^{(1)} \otimes_{\Sigma_{p+1}} B^{\bigotimes p+1}
$$

with a differential which can be identified as induced by the Hochschild boundary b. This gives the first part of the decomposition of Hochschild homology, namely Harrison homology.

The representation $F_{n+1}^{(1)}$ also occurs in the homology of partition lattices [12], the homology of configuration spaces [2,7], and (up to sign) as the multilinear part of the free Lie algebra $[1,11]$.

4. Some results on decompositions

Table 1 lists the decompositions of the representations $F_{n+1}^{(j)}$ of Σ_{n+1} for $n=1, \ldots, 5$ and $j=1, \ldots, n$. The first column gives $F_{n+1}^{(1)}$, the tree representation of Σ_{n+1}. The sum along the nth row of the table gives the representation $\Lambda_{n+1} \mathbb{Q} \Sigma_{n+1}$, the sign representation of $\left\langle\lambda_{n+1}\right\rangle$ induced to Σ_{n+1}.

Table 1
Decompositions of $F_{n+1}^{(J)}$

ns	1	2	3	4	5
1	日				
2	\square	日			
3	田	『	日		
4	E	$\begin{aligned} & \boxplus+\boxplus \\ & +\varpi \end{aligned}$	\square	目	
5	$\begin{aligned} & \text { 田+田 } \\ & + \text { + } \end{aligned}$			目	目

For some values of j ，it is possible to describe the decomposition of the repre－ sentation $F_{n+1}^{(j)}$ into irreducible components．Let ω^{λ} be the irreducible character of the symmetric group Σ_{n+1} corresponding to a partition λ of $n+1$ ．Let $a(T)$ denote the sum of ascents of a standard tableau T ，that is the sum of those i such that $i+1$ appears to the right of i in T ．Then we denote by $\lambda(j, n)$ ，the number of standard tableaux T of shape λ such that $a(T) \equiv j(\bmod n)$ ．

Proposition 4．1．

（1）$(j=1)$ The multiplicity of ω^{λ} in Ψ_{n+1}^{1} is $\lambda(1, n)-\lambda(1, n+1)$ ，
（2）$(j=n-2) \Psi_{n+1}^{n-2}=\omega^{2^{2} 1^{n-3}} \oplus \omega^{321^{n-4}} \oplus \omega^{3^{2} 1^{n-5}} \oplus \omega^{51^{n-4}}$ ，
（3）$(j=n-1) \Psi_{n+1}^{n-1}=\omega^{31^{n-2}}$ ，
（4）$(j=n) \Psi_{n+1}^{n}=\omega^{1^{n+1}}$ ，and
（5）the multiplicity of $\omega^{\dot{d}}$ in the sum of characters $\sum_{j=1}^{n} \Psi_{n+1}^{j}$ is $\lambda(0, n+1)$ ．
Proof．（1）It is easily seen that T is a standard tableau for Σ_{n+1} such that $a(T) \equiv$ $1(\bmod n)$ if and only if it is obtained from a standard tableau T^{\prime} for Σ_{n} ，with $a\left(T^{\prime}\right) \equiv 1(\bmod n)$ ，by attaching $n+1$ to the end of some row or column．Now in $\chi_{n}^{1}, \omega^{\lambda}$ has multiplicity the number of standard tableaux T^{\prime} of shape λ for Σ_{n} such that $a\left(T^{\prime}\right) \equiv 1(\bmod n)$ by a result of Kraskiewicz and Wcyman［6］So in $\operatorname{In} d_{\Sigma_{n}}^{\Sigma_{n+1}}\left(\chi_{n}^{1}\right), \omega^{\lambda}$ has multiplicity $\lambda(1, n)$ ．Since，$\Psi_{n+1}^{1}=\operatorname{In} d_{\Sigma_{n}}^{\Sigma_{n+1}}\left(\chi_{n}^{1}\right)-\chi_{n+1}^{1}$ ，the result follows．
（2－3－4）These results follow directly from those of［5］for $\chi_{n}^{n-2}, \chi_{n}^{n-1}$ and χ_{n}^{n} ．That is，for $j=n-2, n-1, n$ ，the decomposition of Ψ_{n+1}^{j} given above is the only one
which will restrict back to give the correct decomposition of χ_{n}^{i}. (Of course, in the case $j=n$, we have $f_{n+1}^{(n)}=\Lambda_{n+1} e_{n}^{(n)}=\Lambda_{n+1} \varepsilon_{n}=\varepsilon_{n+1}$, where $\varepsilon_{n}=\frac{1}{n!} \sum_{\pi \in \Sigma_{n}}(\operatorname{sgn} \pi) \pi$, and we see directly that we have the sign representation.)
(5) We have seen that this sum of characters is just the sign character of $\left\langle\lambda_{n+1}\right\rangle$ induced to Σ_{n+1}. The formula for the decomposition can be deduced from the work of Stembridge [13].

We also give the relationship between our characters and the trivial character.
Proposition 4.2. The trivial character ω^{n+1} appears only in $\Psi_{n+1}^{n / 2}$ if n is even and does not appear in any Ψ_{n+1}^{i} if n is odd.

Proof. Let $e_{n+1}=\frac{1}{(n+1)!} \sum_{\pi \in \Sigma_{n+1}} \pi$. It is easily checked that

$$
\Lambda_{n+1} e_{n+1}= \begin{cases}e_{n+1} & \text { if } n \text { is even } \\ 0 & \text { if } n \text { is odd }\end{cases}
$$

Hence, the trivial representation does not appear in $\Lambda_{n+1} \mathbb{Q} \Sigma_{n+1}$ when n is odd. When n is even it appears once, and this must be in $\Lambda_{n+1} e_{n}^{(n / 2)} \mathbb{Q} \Sigma_{n+1}$, since Hanlon shows that the trivial representation of Σ_{n} always appears in $e_{n}^{([(n+1) / 2])} \mathbb{Q} \Sigma_{n}$.

Corollary 4.3. The character $\omega^{n 1}$ does not appear in any Ψ_{n+1}^{i} if n is even and appears only in $\Psi_{n+1}^{(n+1) / 2}$ if n is odd.

Proof. The irreducible character $\omega^{n 1}$ of Σ_{n+1} is the only one apart from ω^{n+1} which gives a copy of the trivial character of Σ_{n} on restriction. Hence, the result follows from the above.

Acknowledgement

I acknowledge the financial support of the Science and Engineering Research Council for some of the period when this work was carried out.

References

[1] H. Barcelo, On the action of the symmetric group on the free Lie algebra and the partition lattice, J. Combin. Theory Ser. A 55 (1990) 93-129.
[2] F.R. Cohen and L.R. Taylor, On the representation theory associated to the cohomology of configuration spaces, in: Algebraic Topology (Oaxtepec, 1991), Contemporary Mathematics, Vol. 146 (American Mathematical Society, Providence, RI, 1993).
[3] M. Gerstenhaber and S.D. Schack, A Hodge-type decomposition for commutative algebra cohomology, J. Pure Appl. Algebra 48 (1987) 229-247.
[4] R. Graham, D. Knuth and O. Patashnik, Concrete Mathematics (Addison-Wesley, Reading, MA, 1994).
[5] P. Hanlon, The action of Σ_{n} on the components of the Hodge decomposition of Hochschild homology, Mich. J. Math. 37 (1990) 105-124.
[6] W. Kraskiewicz and J. Weyman, Algebra of coinvariants and the action of Coxeter elements, Torun preprint, 1985
[7] G.I. Lehrer and L. Solomon, On the action of the symmetric group on the cohomology of the complement of its reflecting hyperplanes, J. Algebra 104 (1986) 410-424.
[8] J.-L. Loday, Cyclic Homology (Springer, Berlin, 1992).
[9] T. Natsume and S.D. Schack, A decomposition for the cyclic cohomology of a commutative algebra, J. Pure Appl. Algebra 61 (1989) 273-282.
[10] C.A. Robinson, Γ-homology 1, in preparation.
[11] C.A. Robinson and S.A. Whitehouse, The tree representation of Σ_{n+1}, J. Pure Appl. Algebra 111 (1996) 245-253.
[12] R.P. Stanley, Some aspects of groups acting on finite posets, J. Combin. Theory Ser. A 32 (1982) 132-161.
[13] J. Stembridge, On the eigenvalues of representations of reflection groups and wreath products, Pacific J. Math. 140 (1989) 353-396.
[14] S.A. Whitehouse, Γ-(co)homology of commutative algebras and some related representations of the symmetric group, Ph.D. thesis, University of Warwick, 1994.

[^0]: * E-mail address: sarah@uk.ac.warwick.maths.

