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Abstract 

We show that each Eulerian representation of C, is the restriction of a representation of ,&+I. 
We describe the new representations, giving character formulae, and identify the one which 
restricts to the first Eulerian representation as the tree representation. 

1991 Math. Subj. Class.: 2OC30, 05E10, 13D03 

0. Introduction 

The Eulerian idempotents &), for j = 1 , . . . , n, lying in the rational group algebra of 

the symmetric group QC,, were defined by Gerstenhaber and Schack as follows [3]. 

An (i, n - i)-shuffle in C, is a permutation 71 such that z( 1) < n(2) < . < z(i) and 

n(i+ 1) < 7c(i+2) < .., < n(n). Let si+i = C(sgnn)z E QZ,,, where the sum is 

over (i, n - i)-shuffles in C,, and let s, = CyQ,‘~i,~_-i E QC,. Now s, has minimum 

polynomial ny=,(x - pj), where pj = 2j - 2. Then define 

The &)‘s for j = 1 , . . . , n form a family of mutually orthogonal idempotents such that 

c;=‘=, eP = 1 [3, Theorem 1.21. 

These idempotents provide decompositions of Hochschild and cyclic homology of 

a commutative algebra over a ground ring which contains Q [3, 81. We briefly recall 

the definitions since in particular we will need a property of Comes B map later. 
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For A an associative algebra over k and A4 an A-bimodule, the Hochschild complex is 

C,(A;M) = A4 c% A@“, with boundary b : C,,(A;M) + C,_l(A; M) given by 

Wm 1% al 8 . . . o a,) = (ma, @ a2 18 . . g a,) 
n-l 

+C(-l)'(mOal G3...&3ajai+l @...@aa,) 
i=l 

+(-l)“(a,m@al 6’...@aa,_l). 

Here @ denotes @x_. The Hochschild homology of A with coefficients in M, denoted 

HH,(A;M), is the homology of this chain complex. The symmetric group C, acts on 

the left on C,(A;M) by 

and this extends linearly to an action of the group algebra kc,. Then if A is com- 

mutative and the ground ring k contains CD, the Eulerian idempotents commute with 

the Hochschild boundary map 6, be, (j’ = eli_‘, 6, so that they yield a decomposition of 

Hochschild homology. The first part of this decomposition, given by the idempotents 

ei’), is Harrison homology [3]. 

Letting 2 = A/k, we may define the cyclic homology of A over k, denoted H&(A), 

as the homology of the total complex corresponding to the normalised (b - B) bicom- 

plex: 

bl bl bl 
A ,-& /p’L_K_ ,‘f @ ,_p- “& ,‘j @ ‘/p(n-*) L . 

61 bl hi 

bl bl 
.4 8 .i 

b( a A 

A 

where B : A @ AOn + A @ i@+” is defined by 

B(al @ a2 @ . . @ a,,+1 ) 

n+l 

=)J-ly(j-l)( 
1 0 Qj CC aj+l GE3 . C3 &+I 0 al @ a2 @ . . . CC LZj-1). 

j=l 

NOW, for a commutative algebra A, over a ground ring k containing Q, the Eulerian 

idempotents are well-behaved with respect to B as well as b, Be;:;‘) = ek”B, so that 

they decompose cyclic homology [8, 4.6.71. 
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The representation of C, given by the right ideal &‘QC,, which we denote by E!$, 
has been studied by Hanlon, who gives a character formula [5]. We show that this 

representation is the restriction of a representation of C,,+,, denoted F,$‘,, given by a 

closely related idempotent j$$ in QZ,+,. By first finding a simplified formula for 

the product e, e,,,, (j) (j) in QC,,,, we give a description of the representation F,$), as a 

virtual representation: 

F;;,, @ 6 ,$;, ?Z &&:;‘@. 

i=l i=l 

This leads to a character formula using Hanlon’s results. In the case j = 1, FL:), is 

the tree representation [ 111. 

1. The idempotents f,‘+‘l 

We denote by in+, the n + 1 cycle (1 2.. .n + 1) in Cn+, and let /in+, = 

& C&rgn AL+, )A:+, E Q&+1. We will always regard 2, as contained in C,,+, 

as the subgroup of permutations fixing n + 1, and similarly QC, c QZ,+, . 

Proposition 1.1. An+l.s, = 8,/i,+,. 

Proof. A typical term on the right-hand side of this equation is &+,, appearing with 

sign, sgn(rc).sgn(~~+,) = sgn(r&+,), where rc is some shuffle in C,. Now we may 

write rcni,, , 
= A*(j),f where nl = A-“(j),& 

n+l ’ n+l 
,,+l is in C,. Let 0, : C, + C, be defined 

by Oj(n) = ~~~~~)xJ~+, . When j = n + 1 we simply have the identity map, and for 

j = n it was proved by Natsume and Schack that 8, is a bijection which takes shuffles 

to shuffles [9, Lemma 91. Since it is easily checked that On-k = (On)!+,, the same 

holds for each (4,. So each term of the right-hand side, rc,$+, with sign, appears in 

the left-hand side as $$,x’, with rc’ a shuffle, and with sign sgn(,li$).sgn(7c’) = 

sgn(Ari:)7r’) = sgn(7&+,). 0 

Corollary 1.2. /In+, eii) = ei”A,+l for j = l,...,n. 

Proof. Each ei” is a polynomial in s,, so this is immediate from the above. 0 

Thus, A,+,eL” is an idempotent in OC,,,. 

Definition 1.3. We denote by j-F:, the idempotent element A,+lei” in QC,,,, for 

j = l,..., n. We let EAj’ and FAi’ denote the C&,-modules eij)QPC, and fi”QC,, 

respectively. 

Proposition 1.4. The representation Fi?, of Cn+, when restricted to a representation 

of C, is isomorphic to Eij’. 
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Proof. Consider the homomorphism of right &PC,-modules 0 : 17;” + FA-$ given 

by left multiplication by An+‘. Now since /In+’ and e$$ commute, and since we 

may write n E C,+’ uniquely as A_:+, rr’ for some i and some rc’ E C,, we have 

A,+,(sgn A~+‘)e~j’z = (sgn ,!~+,)f~,n = f~$‘)13k~+,n’ = f,$:,~ . Hence, the homo- 

morphism of right QZ’,-modules which is given by j-i,:, n H (sgn Ah+, )&‘z’ for 71 E 

Zn+, as above, is an inverse for B. So F,$‘, and EAi’ are isomorphic as KU,-modules 

as required. 0 

Proposition 1 S. 

f&F!;‘, ” Indz,“y+, >(E), 
j&l 

where E denotes the sign representation of’ the c:vclic subgroup (A,,+,) of C,,+,. 

Proof. 

efii\ = An+1 kejJ) = An+,, 
j=l +I 

since CJ=, e, (j’ = 1 [3, Th eorem 1.21. So the sum of the representations F$‘, is 

An+, QC,+i. Since A,+’ is the standard idempotent for the sign representation of the 

cyclic subgroup of Cn+’ generated by An+,, An+‘QZ,+’ is the claimed induced repre- 

sentation. 0 

2. A relation between eij) and e,$\ 

In this section we prove certain relations among the ei”‘s and j$“s, which will be 

needed in the following section to give descriptions of our representations. The main 

result is Proposition 2.5, giving a simplification of the product e,$“ei$“. We adopt the 

convention that fLk’ = eP’ = 0 whenever k 2 0 or k > n. 

Lemma 2.1. f~~“=ellj:lA~+l,fbrj= I...., n+ 1. 

Proof. We need to show that A,+‘&-” = e~~,A,,+l. We start from Loday’s relation 
&-I’ 

n = elti+)‘B [8, Theorem 4.6.61 where B is Connes’ boundary operator in the 

normalised setting. We may write B as (n + l)sA,+,, where s is the standard extra 

degeneracyoperator,s(a,Oa2~...~a,+l)=(1l~al~az~...~a,+l) [8, 1.1.121. 

So we have (n + 1 )sA,+l ekJ-” = (n + 1 )e$‘,sA,+i Since the action of e!$, here 

is on the last n + 1 places, leaving the first unaffected, e~~,sA,+, = Se;$‘A,+‘. So 

A,+‘ei’-” = e~~‘A,+’ as required. 0 

Corollary 2.2. F,$T”cELf,,farj= I,..., n+ 1. 
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Note that, since I$:;” restricts to I$$“, to understand the I$“s it is sufficient to 

understand these submodules. 

Since the group algebra C&Z,,+, is semi-simple, we may write 

E(j) 
n+l = F;;;‘, 8 xQC,+, 

for some x E QZ,+,. 

Notation. Let p,, = (1 n)(2 n - 1)(3 n - 2). . . E C, and let opn = (- 1 )n(n+‘,,iZ p,, = 

(-l)“(sgnp,)p, E QZ,. Now consider the idempotents ai” = i(l + (-l)‘opn) in 

QZh. ‘These two idempotents correspond to the sums of the even and odd Eulerian 

idempotents: 

.Ci, _ 
n - c 

,(i, 
n 

i%j (mod 2) 

by [3]. In particular, 0;” (and, h ence, p,,) is a polynomial in s,. Of course, since the 

et ’ ‘s are mutually orthogonal, 

,Ci,,Ci, = G(j,,(,, = 
n II n n 

{ 

er’ if i = j (mod 2), 

0 otherwise. 

Let s,*+, = C(Sgn ~)rr, where the sum is over shuffles in Cn+, which do not fix n + 1. 

So we may write sn+, = 1 + s, f s,*+, . 

Lemma 2.3. ( 1 + s;+, )c$$, = .ij+,,( 1 + s;+, ). 

Proof. Equivalently, we show p,( 1 +s:+, )pn+, = (- 1 )“( 1 +s;+, ). Firstly, on the left- 

hand side we have p,, pni, = A;+,, , and since this is a 1 -shuffle with A;+,, (1) = n + 1, it 

also appears in the right-hand side. Any other term on the left-hand side has the form 

(sgn n)p,,rcp,,+, where 7t is some k-shuffle in C,,+, not fixing n+ 1. Then x(k) = n+ 1, 

and it is easy to see that p,,np,+l is an (n + 2 - k)-shuffle taking (n + 2 - k) to n + 1. 

(In the case k = 1, we must have rc = j,;;,, and we get p,,np,+, = 1.) Since 

sgn(p,np,+l ) = (- 1 )“sgn(z), the result follows. 0 

Lemma 2 4 e(j’o(‘) *. n n+,(&l+l - pj) = 0. 

Proof. 

,;i),(j) 
II+, (&+I - /Lj) = eij)(s,+l - /lj)C::, 

= eLj’( 1 + Sn + Sx+, - /ij)fJii,‘, 

= ep)(sn - /lj))(TF:, + ep’( 1 + Sz+, )Q+,, 

= el;i,( 1 + s,*+, )&, n+l 

= e~j),~+“( 1 + s,*+, ) by Lemma 2.3 

=o. 0 
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Proof. Recall that the minimum polynomial of s,+i is ~~~~(x--~j), where pj = 2j -2. 

So right multiplication by sn+i is an operator on the subspace of U&Y,+, spanned by 

1, sn+1, ‘..> s;+1. It has n+ 1 distinct eigenvalues ~1, . . . , ,uL,+l and it follows from the 

definition of the Eulerian idempotents that right multiplication by ~$2, is projection onto 

the eigenspace corresponding to eigenvalue pj. So, by Lemma 2.4, &‘cJ:$, is contained 

in the left ideal QC,+i (e(j) ) n+l . Hence , I;i),(j) e n+l 
= e$Aa~~l),ei’,‘l~ But &) ,W = ,(A 

nfl n+l n+l. 

0 

In fact, using the same method, one can also show that $‘t$~, = &‘c$‘~,. 

3. Fj{\ as a virtual representation 

The main result of this section is Theorem 3.4, giving a description of the represen- 

tation F,$ . 

Definition 3.1. We define certain elements of the group algebra QZc,+l: 

(A 
%+1 = -&(+ 1)+(-1y0~~+~(i-2)(-1)~~~~+,). 

i=3 

Lemma 3.2. 

= & ( (It - 1) + (-l)‘op, + (-1)“+j-‘1,-:,op, - &9;+, 
i=2 > 

Proposition 3.3. &‘f~li,‘~x~~, = (1 - /In+, )ekj). 

Proof. We will use c#) = (- I)‘e~“op, and qnop,+, = (- l)“+‘ii+i,. NOW 

(j) (j) Cj) 
% %lXn+l = 

e~)alj,),x!,$ by Proposition 2.5 

=2 ( 
I@) 1 + (- 1 )~op,+,)~~, 
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so 

,(j) (A W 
,ij) 

n e,+lxn+l 
= z 

( 
(n - 1) + (-ly’op, + (-l)“+‘-‘&!,oP” 

- &-l)“‘ri:+J 
i=2 

,Jli) n 

=- 

n+l ( n + (-l)“f’op,;l$Ip, - c(-l)“‘~:+l 
i=2 ) 

,$A 

= n+l n + (-l)“+‘&+, - 
( 

&‘A;+,) 
i=2 

,;A n 

=- n- 

n+l ( 
c 

(-l)?;+, 

i=l ) 

= e, (j)( 1 - A,+r) 

= (1 - A,+,)@) by Corollary 1.2. 0 

Now we can prove the main result. We will use the fact that given an idempotent 

e in QZ,, giving a representation eQ;pC, of Z,, then the induced representation of 

c flfl is given by eQC,+t. We also need the result, due to Hanlon, that the dimension 

of the representation Ef$ is s(n,j), the number of permutations in C, with exactly j 

cycles [5]. 

Theorem 3.4. 

Proof. The result will be proved by induction on j. First, we consider the case j = 1. 

Here we need to show that R’,$I $ Ei:), 2 Z~CI~‘E$~). That is, 

F(l) @$’ 
n+l 

!Z e(‘)QZ,+r 
n+l n 

Now it is clear that 

e(‘)QZ,+1 n = An+le~l)QC,+l 83 (1 - An+l)e~‘)QC,+r 

= I$:), $ (1 - (In+1 )ek’)QZ,+l. 

So we must show that (1 - A,,+, )ei”QZ,+, g Ey:),, that is (1 - AntI )e~“QZ,+r 2 

eiy, QC,+l . Using the fact that Ei” has dimension (n - l)!, we see that both of these 

modules have dimension n!. We define 

8 : e(l) IIf1 QC n+l + (1 - &+l)e(‘)Q&+~ n 
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to be the homomorphism of right QC ,+,-modules given by left-multiplication by the 

element (1 - /in+, )ei’ ). Then 

by Proposition 3.3. Thus, B is surjective, and so an isomotphism, giving the result 

for j=l. Note that this identifies EL:), with the submodule ei’)(l - An+,)QC,+, of 

e( I n ‘Q&z ntl. 
Now we assume the result for j - 1 and consider j. Using the induction hypothesis 

it is sufficient to show that FAC’, @Et:‘, LX Fiir’) @ Id~:+IE~j’. That is, 

An+,e;j)QC,+, @E;;, 2 F,,+, (j-,) @ e~j)QPC,+l. 

Now, we clearly have 

e;QX,+, = An+, eF,QZ,+, t!E (1 - /in+, )ekj,QC,+, , 

so we must show that EF$, 2 Fji,‘) % (1 - /in+] )eJI’)QZ,+,. By Corollary 2.2, 
E’” 

fl+l 
= Fn(i/$‘) @ xQZ:,+, Hence, the above simplifies to showing that xQI~+, % 

(1 - A,+,)e”‘QZ n ,,+, . We define 8 : Ef$, --f (1 - A,,+, )ek”QC,+, to be the homo- 

morphism of right Q.Z,+,-modules given by left-multiplication by (1 - &+,)eLj). By 

Corollary 1 2 ( 1 - A,+, )e( j,A . 9 n n+,eij-l’ = 0, so F,($,,’ c Ker 0. Hence, 8 induces 

a Q&+I -module homomorphism: 8’ : xQZn+l 4 (1 - A,+,)e~“QZ,+, . Next, we 

check the dimensions of these QZ ,+,-modules. We have seen in Proposition 1.4 that 

Fi$ restricts to EL’), so has the same dimension, s(n,i). So xOC,+, has dimension 

s(n+l,j)-s(n,j-l), and (l-A,+,)e~i)Q.Z,+, has dimension (n+ l)s(n,j)-s(n,j) = 

ns(n,j). Since s(n + 1,j) = s(n,j - 1) + ns(n,j), (see [4, p. 261, Eq. (6.8)], the two 

modules do have the same dimension. Hence, it is sufficient to show that 0’ is surjective 

to conclude that it is a UZI.X,+,-module isomorphism. But, 

(1 _ /in+, ),(A = ,(/,,(A $1 
n by Proposition 3.3 

= (; -~::;b~j,e$$>l since 1 - An+, is an idempotent 

= of(e(j) ,(A 
n+,. n+l 1 . 

Hence, 0’ is surjective. 0 

Notation. Let YL,, denote the character of the representation F,$ of Cn+, and let fi 

denote the character of the representation EL” of C,. 

Corollary 3.5. 

We give the formula for the character Yi,, exphcitly. 



S. Whitehousei Journal of’ Pure and Applied Algebra 115 (1997) 309-320 317 

Corollary 3.6. For g E C,,+l, 

(-l)“+“(s - l)!(r)s-‘p(r) ifg has cycle type (r)S with 

q+,(g) = r > 1, or (r)‘(l), 

0 if g has any other cycle type. 

Proof. We have shown that Y/L+, = Indg:+’ (1:) - xA+, . The result is a straightforward 

induced character calculation from Hanlon’s result: x: = E . (Zndkp,), where pn is a 

faithful linear character of the cyclic subgroup of Z,,+r generated by an n-cycle and E 

is the alternating character [5]. 0 

It is shown in [l 11 that this is exactly the character of the tree representation of 

C,+r This representation arises in r-homology, HT,, a homology theory for E,-ring 

spectra, introduced by Robinson in [lo], which specialises to a new homology theory 

for commutative algebras. Let B be a flat commutative algebra over a commutative 

ground ring A and M a B-module. An application of our results allows us to prove 

that when the ground ring A contains Q, r-homology agrees with Harrison homology, 

HT,(B/A;M) g Harr,+l(B/A;M). (In general, the theories are different.) Since the 

definition of f-homology is rather long, here we only outline the idea of the proof. 

The result was announced in [14] and will appear elsewhere. 

There is a first quadrant spectral sequence converging to r-homology, 

,c’ P.4 = M C3 Tor~zp+l(Vp+l,B@p+l) ===% HT,+,(B/A;M), 
P 

where VP+1 denotes the restriction to C,+r of the tree representation of C,,,. When A 

contains Q the spectral sequence collapses to the edge and, by Proportion 1.4, V,+t is 

isomorphic to EF;,. Then r-homology is the homology of a complex 

with a differential which can be identified as induced by the Hochschild boundary h. 

This gives the first part of the decomposition of Hochschild homology, namely Harrison 

homology. 

The representation Fi:), also occurs i n the homology of partition lattices [12], the 

homology of configuration spaces [2, 71, and (up to sign) as the multilinear part of 

the free Lie algebra [ 1, 111. 

4. Some results on decompositions 

Table 1 lists the decompositions of the representations F,$ll of Cn+r for n = 1,. . . ,5 

and j = 1,. . . ,n. The first column gives FL:),, the tree representation of Cn+t. The 

sum along the nth row of the table gives the representation &+rQZ,+r, the sign 

representation of (I,,+1 ) induced to Z,,+r . 
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Table 1 

Decompositions of FL:‘, 

$ 
1 

- 

2 
- 

3 

- 

4 

- 

5 

- 

-I- 

1 

El 

[II) 

q 

EEEl+ IT 
+ II= 

2 

LTV +A + 
+EEP 

3 4 5 

For some values of j, it is possible to describe the decomposition of the repre- 

sentation Fit, into irreducible components. Let oi, be the irreducible character of the 

symmetric group C,,+l corresponding to a partition A of n + 1. Let a(r) denote the sum 

of ascents of a standard tableau T, that is the sum of those i such that i + 1 appears 

to the right of i in T. Then we denote by A(j,n), the number of standard tableaux T 
of shape 13. such that a(T) E j (mod n). 

Proposition 4.1. 

(1) 
(2) 
(3) 

(4) 
(5) 

(j = 1) The mzdtiplicity ofw’ in !PA+, is A(l,n) - A(l,n + l), 
(j = n _ 2) yJ,n;; = 0221”-3 @ 0321”-4 @ 03’l”-5 @ (+-4, 

(j = n - 1) y;;; = w31”-2, 

(j = n) Y;,, = co]“+‘, and 

the multiplicity of coi in the sum of characters cy=, YL+, is A(O,n + 1). 

Proof. (1) It is easily seen that T is a standard tableau for Cn+i such that a(T) G 
1 (mod n) if and only if it is obtained from a standard tableau T’ for Z,,, with 

a(T’) G 1 (mod n), by attaching n + 1 to the end of some row or column. Now 

in xi, o1 has multiplicity the number of standard tableaux T’ of shape 1 for C, 

such that a(T’) E 1 (mod n) by a result of Kraskiewicz and Weyman [6] So in 

Zndg;+‘(XA), co’ has multiplicity A(l,n). Since, !Pi+, = Ind~:+‘(x~) - x:+~, the result 

follows. 

(2-3-4) These results follow directly from those of [5] for x,“-~, x:-’ and 2:. That 

is, for j = n - 2,n - l,n, the decomposition of Yi+i given above is the only one 
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which will restrict back to give the correct decomposition of J&. (Of course, in the 

case j = n, we have f$), = A,,+,&” = &,+I&,, = &,,+I, where E,, = $ CnEz,(sgnx)z, 
and we see directly that we have the sign representation.) 

(5) We have seen that this sum of characters is just the sign character of (A,+,) 

induced to Cn+l. The formula for the decomposition can be deduced from the work of 

Stembridge [13]. 0 

We also give the relationship between our characters and the trivial character. 

Proposition 4.2. The trivial character oY’+’ appears only in Y$, if n is even and 

does not appear in any Yf+, if n is odd. 

Proof. Let e,+l = (n+l)! 1 CnEz,+, rc. It is easily checked that 

A+len+i = 2” 
{ 

if 12 is even, 

if n is odd. 

Hence, the trivial representation does not appear in A,+IQC,+I when n is odd. When 

n is even it appears once, and this must be in _4n+le!‘2)QPC,+1, since Hanlon shows 

that the trivial representation of Z‘, always appears in &(n+1)‘21)QZ,. q 

Corollary 4.3. The character w”’ does not appear in any YL,, if n is even and 

appears only in Yj2”+:‘)‘2 if n is odd. 

Proof. The irreducible character co”’ of Cn+l is the only one apart from I@’ which 

gives a copy of the trivial character of C, on restriction. Hence, the result follows 

from the above. Cl 
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