

Journal of Pure and Applied Algebra 115 (1997) 309-320

JOURNAL OF PURE AND APPLIED ALGEBRA

The Eulerian representations of Σ_n as restrictions of representations of Σ_{n+1}

Sarah Whitehouse*

Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK

Communicated by J.D. Stasheff; received 2 February 1995; revised 18 October 1995

Abstract

We show that each Eulerian representation of Σ_n is the restriction of a representation of Σ_{n+1} . We describe the new representations, giving character formulae, and identify the one which restricts to the first Eulerian representation as the tree representation.

1991 Math. Subj. Class.: 20C30, 05E10, 13D03

0. Introduction

The Eulerian idempotents $e_n^{(j)}$, for j = 1, ..., n, lying in the rational group algebra of the symmetric group $\mathbb{Q}\Sigma_n$, were defined by Gerstenhaber and Schack as follows [3]. An (i, n - i)-shuffle in Σ_n is a permutation π such that $\pi(1) < \pi(2) < ... < \pi(i)$ and $\pi(i+1) < \pi(i+2) < ... < \pi(n)$. Let $s_{i,n-i} = \sum (sgn\pi)\pi \in \mathbb{Q}\Sigma_n$, where the sum is over (i, n - i)-shuffles in Σ_n , and let $s_n = \sum_{i=1}^{n-1} s_{i,n-i} \in \mathbb{Q}\Sigma_n$. Now s_n has minimum polynomial $\prod_{i=1}^{n} (x - \mu_i)$, where $\mu_i = 2^j - 2$. Then define

$$e_n^{(j)} = \prod_{i \neq j} \frac{s_n - \mu_i}{(\mu_j - \mu_i)}.$$

The $e_n^{(j)}$'s for j = 1, ..., n form a family of mutually orthogonal idempotents such that $\sum_{j=1}^{n} e_n^{(j)} = 1$ [3, Theorem 1.2].

These idempotents provide decompositions of Hochschild and cyclic homology of a commutative algebra over a ground ring which contains \mathbb{Q} [3, 8]. We briefly recall the definitions since in particular we will need a property of Connes' *B* map later.

^{*} E-mail address: sarah@uk.ac.warwick.maths.

For A an associative algebra over k and M an A-bimodule, the Hochschild complex is $C_n(A; M) = M \otimes A^{\otimes n}$, with boundary $b : C_n(A; M) \to C_{n-1}(A; M)$ given by

$$b(m \otimes a_1 \otimes \cdots \otimes a_n) = (ma_1 \otimes a_2 \otimes \cdots \otimes a_n) + \sum_{i=1}^{n-1} (-1)^i (m \otimes a_1 \otimes \cdots \otimes a_i a_{i+1} \otimes \cdots \otimes a_n) + (-1)^n (a_n m \otimes a_1 \otimes \cdots \otimes a_{n-1}).$$

Here \otimes denotes \otimes_k . The Hochschild homology of A with coefficients in M, denoted $HH_n(A; M)$, is the homology of this chain complex. The symmetric group Σ_n acts on the left on $C_n(A; M)$ by

$$\sigma(m \otimes a_1 \otimes \ldots \otimes a_n) = (m \otimes a_{\sigma^{-1}(1)} \otimes \ldots \otimes a_{\sigma^{-1}(n)}),$$

and this extends linearly to an action of the group algebra $k\Sigma_n$. Then if A is commutative and the ground ring k contains \mathbb{Q} , the Eulerian idempotents commute with the Hochschild boundary map b, $be_n^{(j)} = e_{n-1}^{(j)}b$, so that they yield a decomposition of Hochschild homology. The first part of this decomposition, given by the idempotents $e_n^{(1)}$, is Harrison homology [3].

Letting $\overline{A} = A/k$, we may define the cyclic homology of A over k, denoted $HC_*(A)$, as the homology of the total complex corresponding to the normalised (b-B) bicomplex:

where $B: A \otimes \overline{A}^{\otimes n} \to A \otimes \overline{A}^{(n+1)}$ is defined by

$$B(a_1 \otimes a_2 \otimes \ldots \otimes a_{n+1})$$

= $\sum_{j=1}^{n+1} (-1)^{n(j-1)} (1 \otimes a_j \otimes a_{j+1} \otimes \ldots \otimes a_{n+1} \otimes a_1 \otimes a_2 \otimes \ldots \otimes a_{j-1}).$

Now, for a commutative algebra A, over a ground ring k containing \mathbb{Q} , the Eulerian idempotents are well-behaved with respect to B as well as b, $Be_{n-1}^{(j-1)} = e_n^{(j)}B$, so that they decompose cyclic homology [8, 4.6.7].

310

The representation of Σ_n given by the right ideal $e_n^{(j)} \mathbb{Q}\Sigma_n$, which we denote by $E_n^{(j)}$, has been studied by Hanlon, who gives a character formula [5]. We show that this representation is the restriction of a representation of Σ_{n+1} , denoted $F_{n+1}^{(j)}$, given by a closely related idempotent $f_{n+1}^{(j)}$ in $\mathbb{Q}\Sigma_{n+1}$. By first finding a simplified formula for the product $e_n^{(j)}e_{n+1}^{(j)}$ in $\mathbb{Q}\Sigma_{n+1}$, we give a description of the representation $F_{n+1}^{(j)}$ as a virtual representation:

$$F_{n+1}^{(j)} \oplus \bigoplus_{i=1}^{j} E_{n+1}^{(i)} \cong \bigoplus_{i=1}^{j} Ind_{\Sigma_{n}}^{\Sigma_{n+1}} E_{n}^{(i)}.$$

This leads to a character formula using Hanlon's results. In the case j = 1, $F_{n+1}^{(1)}$ is the tree representation [11].

1. The idempotents $f_{n+1}^{(j)}$

We denote by λ_{n+1} the n+1 cycle $(1 \ 2 \dots n+1)$ in Σ_{n+1} and let $A_{n+1} = \frac{1}{n+1} \sum_{i=0}^{n} (sgn \lambda_{n+1}^{i}) \lambda_{n+1}^{i} \in \mathbb{Q}\Sigma_{n+1}$. We will always regard Σ_{n} as contained in Σ_{n+1} as the subgroup of permutations fixing n+1, and similarly $\mathbb{Q}\Sigma_{n} \subset \mathbb{Q}\Sigma_{n+1}$.

Proposition 1.1. $\Lambda_{n+1}s_n = s_n \Lambda_{n+1}$.

Proof. A typical term on the right-hand side of this equation is $\pi \lambda_{n+1}^j$, appearing with sign, $sgn(\pi).sgn(\lambda_{n+1}^j) = sgn(\pi \lambda_{n+1}^j)$, where π is some shuffle in Σ_n . Now we may write $\pi \lambda_{n+1}^j = \lambda_{n+1}^{\pi(j)} \pi'$, where $\pi' = \lambda_{n+1}^{-\pi(j)} \pi \lambda_{n+1}^j$ is in Σ_n . Let $\theta_j : \Sigma_n \to \Sigma_n$ be defined by $\theta_j(\pi) = \lambda_{n+1}^{-\pi(j)} \pi \lambda_{n+1}^j$. When j = n + 1 we simply have the identity map, and for j = n it was proved by Natsume and Schack that θ_n is a bijection which takes shuffles to shuffles [9, Lemma 9]. Since it is easily checked that $\theta_{n-k} = (\theta_n)^{k+1}$, the same holds for each θ_j . So each term of the right-hand side, $\pi \lambda_{n+1}^j$ with sign, appears in the left-hand side as $\lambda_{n+1}^{\pi(j)} \pi'$, with π' a shuffle, and with sign $sgn(\lambda_{n+1}^{\pi(j)}).sgn(\pi') = sgn(\pi \lambda_{n+1}^{\pi(j)})$. \Box

Corollary 1.2. $\Lambda_{n+1}e_n^{(j)} = e_n^{(j)}\Lambda_{n+1}$ for j = 1, ..., n.

Proof. Each $e_n^{(j)}$ is a polynomial in s_n , so this is immediate from the above. \Box

Thus, $\Lambda_{n+1}e_n^{(j)}$ is an idempotent in $\mathbb{Q}\Sigma_{n+1}$.

Definition 1.3. We denote by $f_{n+1}^{(j)}$ the idempotent element $\Lambda_{n+1}e_n^{(j)}$ in $\mathbb{Q}\Sigma_{n+1}$, for $j = 1, \ldots, n$. We let $E_n^{(j)}$ and $F_n^{(j)}$ denote the $\mathbb{Q}\Sigma_n$ -modules $e_n^{(j)}\mathbb{Q}\Sigma_n$ and $f_n^{(j)}\mathbb{Q}\Sigma_n$, respectively.

Proposition 1.4. The representation $F_{n+1}^{(j)}$ of Σ_{n+1} when restricted to a representation of Σ_n is isomorphic to $E_n^{(j)}$.

Proof. Consider the homomorphism of right $\mathbb{Q}\Sigma_n$ -modules $\theta : E_n^{(j)} \to F_{n+1}^{(j)}$ given by left multiplication by Λ_{n+1} . Now since Λ_{n+1} and $e_n^{(j)}$ commute, and since we may write $\pi \in \Sigma_{n+1}$ uniquely as $\lambda_{n+1}^i \pi'$ for some *i* and some $\pi' \in \Sigma_n$, we have $\Lambda_{n+1}(sgn \lambda_{n+1}^i)e_n^{(j)}\pi' = (sgn \lambda_{n+1}^i)f_{n+1}^{(j)}\pi' = f_{n+1}^{(j)}\lambda_{n+1}^i\pi' = f_{n+1}^{(j)}\pi$. Hence, the homomorphism of right $\mathbb{Q}\Sigma_n$ -modules which is given by $f_{n+1}^{(j)}\pi \mapsto (sgn \lambda_{n+1}^i)e_n^{(j)}\pi'$ for $\pi \in$ Σ_{n+1} as above, is an inverse for θ . So $F_{n+1}^{(j)}$ and $E_n^{(j)}$ are isomorphic as $\mathbb{Q}\Sigma_n$ -modules as required. \Box

Proposition 1.5.

$$\bigoplus_{j=1}^{n} F_{n+1}^{(j)} \cong Ind_{<\lambda_{n+1}>}^{\Sigma_{n+1}}(\varepsilon),$$

where ε denotes the sign representation of the cyclic subgroup $\langle \lambda_{n+1} \rangle$ of Σ_{n+1} .

Proof.

$$\sum_{j=1}^{n} f_{n+1}^{(j)} = A_{n+1} \sum_{j=1}^{n} e_n^{(j)} = A_{n+1},$$

since $\sum_{j=1}^{n} e_n^{(j)} = 1$ [3, Theorem 1.2]. So the sum of the representations $F_{n+1}^{(j)}$ is $\Lambda_{n+1} \mathbb{Q}\Sigma_{n+1}$. Since Λ_{n+1} is the standard idempotent for the sign representation of the cyclic subgroup of Σ_{n+1} generated by λ_{n+1} , $\Lambda_{n+1} \mathbb{Q}\Sigma_{n+1}$ is the claimed induced representation. \Box

2. A relation between $e_n^{(j)}$ and $e_{n+1}^{(j)}$

In this section we prove certain relations among the $e_n^{(j)}$'s and $f_n^{(j)}$'s, which will be needed in the following section to give descriptions of our representations. The main result is Proposition 2.5, giving a simplification of the product $e_n^{(j)}e_{n+1}^{(j)}$. We adopt the convention that $f_n^{(k)} = e_n^{(k)} = 0$ whenever $k \le 0$ or k > n.

Lemma 2.1.
$$f_{n+1}^{(j-1)} = e_{n+1}^{(j)} \Lambda_{n+1}$$
, for $j = 1, ..., n+1$.

Proof. We need to show that $\Lambda_{n+1}e_n^{(j-1)} = e_{n+1}^{(j)}\Lambda_{n+1}$. We start from Loday's relation $Be_n^{(j-1)} = e_{n+1}^{(j)}B$ [8, Theorem 4.6.6] where *B* is Connes' boundary operator in the normalised setting. We may write *B* as $(n+1)s\Lambda_{n+1}$, where *s* is the standard extra degeneracy operator, $s(a_1 \otimes a_2 \otimes \ldots \otimes a_{n+1}) = (1 \otimes a_1 \otimes a_2 \otimes \ldots \otimes a_{n+1})$ [8, 1.1.12]. So we have $(n+1)s\Lambda_{n+1}e_n^{(j-1)} = (n+1)e_{n+1}^{(j)}s\Lambda_{n+1}$. Since the action of $e_{n+1}^{(j)}$ here is on the last n+1 places, leaving the first unaffected, $e_{n+1}^{(j)}s\Lambda_{n+1} = se_{n+1}^{(j)}\Lambda_{n+1}$. So $\Lambda_{n+1}e_n^{(j-1)} = e_{n+1}^{(j)}\Lambda_{n+1}$ as required. \Box

Corollary 2.2. $F_{n+1}^{(j-1)} \subset E_{n+1}^{(j)}$, for j = 1, ..., n+1.

Note that, since $F_{n+1}^{(j-1)}$ restricts to $E_n^{(j-1)}$, to understand the $E_n^{(j)}$'s it is sufficient to understand these submodules.

Since the group algebra $\mathbb{Q}\Sigma_{n+1}$ is semi-simple, we may write

$$E_{n+1}^{(j)} = F_{n+1}^{(j-1)} \oplus x \mathbb{Q} \Sigma_{n+1}$$

for some $x \in \mathbb{Q}\Sigma_{n+1}$.

Notation. Let $p_n = (1 \ n)(2 \ n-1)(3 \ n-2) \dots \in \Sigma_n$ and let $op_n = (-1)^{n(n+1)/2} p_n = (-1)^n (sgn p_n) p_n \in \mathbb{Q}\Sigma_n$. Now consider the idempotents $\sigma_n^{(j)} = \frac{1}{2}(1 + (-1)^j op_n)$ in $\mathbb{Q}\Sigma_n$. These two idempotents correspond to the sums of the even and odd Eulerian idempotents:

$$\sigma_n^{(j)} = \sum_{i \equiv j \pmod{2}} e_n^{(i)}$$

by [3]. In particular, $\sigma_n^{(j)}$ (and, hence, p_n) is a polynomial in s_n . Of course, since the $e_n^{(i)}$'s are mutually orthogonal,

$$e_n^{(i)}\sigma_n^{(j)} = \sigma_n^{(j)}e_n^{(i)} = \begin{cases} e_n^{(i)} & \text{if } i \equiv j \pmod{2}, \\ 0 & \text{otherwise.} \end{cases}$$

Let $s_{n+1}^* = \sum (sgn \pi)\pi$, where the sum is over shuffles in Σ_{n+1} which do not fix n+1. So we may write $s_{n+1} = 1 + s_n + s_{n+1}^*$.

Lemma 2.3. $(1 + s_{n+1}^*)\sigma_{n+1}^{(j)} = \sigma_n^{(j+1)}(1 + s_{n+1}^*)$

Proof. Equivalently, we show $p_n(1+s_{n+1}^*)p_{n+1} = (-1)^n(1+s_{n+1}^*)$. Firstly, on the lefthand side we have $p_n p_{n+1} = \lambda_{n+1}^{-1}$, and since this is a 1-shuffle with $\lambda_{n+1}^{-1}(1) = n+1$, it also appears in the right-hand side. Any other term on the left-hand side has the form $(sgn \pi)p_n\pi p_{n+1}$ where π is some k-shuffle in Σ_{n+1} not fixing n+1. Then $\pi(k) = n+1$, and it is easy to see that $p_n\pi p_{n+1}$ is an (n+2-k)-shuffle taking (n+2-k) to n+1. (In the case k = 1, we must have $\pi = \lambda_{n+1}^{-1}$, and we get $p_n\pi p_{n+1} = 1$.) Since $sgn(p_n\pi p_{n+1}) = (-1)^n sgn(\pi)$, the result follows. \Box

Lemma 2.4. $e_n^{(j)}\sigma_{n+1}^{(j)}(s_{n+1}-\mu_j)=0.$

Proof.

$$e_n^{(j)}\sigma_{n+1}^{(j)}(s_{n+1} - \mu_j) = e_n^{(j)}(s_{n+1} - \mu_j)\sigma_{n+1}^{(j)}$$

= $e_n^{(j)}(1 + s_n + s_{n+1}^* - \mu_j)\sigma_{n+1}^{(j)}$
= $e_n^{(j)}(s_n - \mu_j)\sigma_{n+1}^{(j)} + e_n^{(j)}(1 + s_{n+1}^*)\sigma_{n+1}^{(j)}$
= $e_n^{(j)}(1 + s_{n+1}^*)\sigma_{n+1}^{(j)}$
= $e_n^{(j)}\sigma_n^{(j+1)}(1 + s_{n+1}^*)$ by Lemma 2.3
= 0. \Box

Proposition 2.5. $e_n^{(j)} e_{n+1}^{(j)} = e_n^{(j)} \sigma_{n+1}^{(j)}$.

Proof. Recall that the minimum polynomial of s_{n+1} is $\prod_{j=1}^{n+1}(x-\mu_j)$, where $\mu_j = 2^j - 2$. So right multiplication by s_{n+1} is an operator on the subspace of $\mathbb{Q}\Sigma_{n+1}$ spanned by 1, $s_{n+1}, \ldots, s_{n+1}^n$. It has n+1 distinct eigenvalues μ_1, \ldots, μ_{n+1} and it follows from the definition of the Eulerian idempotents that right multiplication by $e_{n+1}^{(j)}$ is projection onto the eigenspace corresponding to eigenvalue μ_j . So, by Lemma 2.4, $e_n^{(j)}\sigma_{n+1}^{(j)}$ is contained in the left ideal $\mathbb{Q}\Sigma_{n+1}(e_{n+1}^{(j)})$. Hence, $e_n^{(j)}\sigma_{n+1}^{(j)} = e_n^{(j)}\sigma_{n+1}^{(j)}e_{n+1}^{(j)}$. But $\sigma_{n+1}^{(j)}e_{n+1}^{(j)} = e_{n+1}^{(j)}$.

In fact, using the same method, one can also show that $e_n^{(j)}e_{n+1}^{(j)} = \sigma_n^{(j)}e_{n+1}^{(j)}$.

3. $F_{n+1}^{(j)}$ as a virtual representation

The main result of this section is Theorem 3.4, giving a description of the representation $F_{n+1}^{(j)}$.

Definition 3.1. We define certain elements of the group algebra $\mathbb{Q}\Sigma_{n+1}$:

$$x_{n+1}^{(j)} = \frac{2}{n+1} \left((n-1) + (-1)^j op_n + \sum_{i=3}^n (i-2)(-1)^{n_i} \lambda_{n+1}^i \right).$$

Lemma 3.2.

$$(1+(-1)^{n+1}\lambda_{n+1}^{-1})x_{n+1}^{(j)}$$

= $\frac{2}{n+1}\left((n-1)+(-1)^{j}op_{n}+(-1)^{n+j-1}\lambda_{n+1}^{-1}op_{n}-\sum_{i=2}^{n}(-1)^{ni}\lambda_{n+1}^{i}\right).$

Proposition 3.3. $e_n^{(j)} e_{n+1}^{(j)} x_{n+1}^{(j)} = (1 - \Lambda_{n+1}) e_n^{(j)}$.

Proof. We will use $e_n^{(j)} = (-1)^j e_n^{(j)} op_n$ and $op_n op_{n+1} = (-1)^{n+1} \lambda_{n+1}^{-1}$. Now

$$e_n^{(j)} e_{n+1}^{(j)} x_{n+1}^{(j)} = e_n^{(j)} \sigma_{n+1}^{(j)} x_{n+1}^{(j)} \text{ by Proposition 2.5}$$

$$= \frac{1}{2} e_n^{(j)} (1 + (-1)^j o p_{n+1}) x_{n+1}^{(j)}$$

$$= \frac{1}{2} e_n^{(j)} (1 + o p_n o p_{n+1}) x_{n+1}^{(j)}$$

$$= \frac{1}{2} e_n^{(j)} (1 + (-1)^{n+1} \lambda_{n+1}^{-1}) x_{n+1}^{(j)}$$

314

So

$$e_{n}^{(j)}e_{n+1}^{(j)}x_{n+1}^{(j)} = \frac{e_{n}^{(j)}}{n+1} \left((n-1) + (-1)^{j}op_{n} + (-1)^{n+j-1}\lambda_{n+1}^{-1}op_{n} - \sum_{i=2}^{n} (-1)^{ni}\lambda_{n+1}^{i} \right)$$

$$= \frac{e_{n}^{(j)}}{n+1} \left(n + (-1)^{n+1}op_{n}\lambda_{n+1}^{-1}op_{n} - \sum_{i=2}^{n} (-1)^{ni}\lambda_{n+1}^{i} \right)$$

$$= \frac{e_{n}^{(j)}}{n+1} \left(n + (-1)^{n+1}\lambda_{n+1} - \sum_{i=2}^{n} (-1)^{ni}\lambda_{n+1}^{i} \right)$$

$$= \frac{e_{n}^{(j)}}{n+1} \left(n - \sum_{i=1}^{n} (-1)^{ni}\lambda_{n+1}^{i} \right)$$

$$= e_{n}^{(j)} (1 - A_{n+1})$$

$$= (1 - A_{n+1})e_{n}^{(j)} \text{ by Corollary 1.2. } \Box$$

Now we can prove the main result. We will use the fact that given an idempotent e in $\mathbb{Q}\Sigma_n$, giving a representation $e\mathbb{Q}\Sigma_n$ of Σ_n , then the induced representation of Σ_{n+1} is given by $e\mathbb{Q}\Sigma_{n+1}$. We also need the result, due to Hanlon, that the dimension of the representation $E_n^{(j)}$ is s(n, j), the number of permutations in Σ_n with exactly j cycles [5].

Theorem 3.4.

$$F_{n+1}^{(j)} \oplus \bigoplus_{i=1}^{j} E_{n+1}^{(i)} \cong \bigoplus_{i=1}^{j} Ind_{\Sigma_{n}}^{\Sigma_{n+1}} E_{n}^{(i)}.$$

Proof. The result will be proved by induction on *j*. First, we consider the case j = 1. Here we need to show that $F_{n+1}^{(1)} \oplus E_{n+1}^{(1)} \cong Ind_{\Sigma_n}^{\Sigma_{n+1}} E_n^{(1)}$. That is,

$$F_{n+1}^{(1)} \oplus E_{n+1}^{(1)} \cong e_n^{(1)} \mathbb{Q} \Sigma_{n+1}.$$

Now it is clear that

$$e_n^{(1)} \mathbb{Q} \Sigma_{n+1} = \Lambda_{n+1} e_n^{(1)} \mathbb{Q} \Sigma_{n+1} \oplus (1 - \Lambda_{n+1}) e_n^{(1)} \mathbb{Q} \Sigma_{n+1}$$

= $F_{n+1}^{(1)} \oplus (1 - \Lambda_{n+1}) e_n^{(1)} \mathbb{Q} \Sigma_{n+1}.$

So we must show that $(1 - \Lambda_{n+1})e_n^{(1)}\mathbb{Q}\Sigma_{n+1} \cong E_{n+1}^{(1)}$, that is $(1 - \Lambda_{n+1})e_n^{(1)}\mathbb{Q}\Sigma_{n+1} \cong e_{n+1}^{(1)}\mathbb{Q}\Sigma_{n+1}$. Using the fact that $E_n^{(1)}$ has dimension (n-1)!, we see that both of these modules have dimension n!. We define

$$\theta: e_{n+1}^{(1)} \mathbb{Q}\Sigma_{n+1} \to (1 - \Lambda_{n+1}) e_n^{(1)} \mathbb{Q}\Sigma_{n+1}$$

to be the homomorphism of right $\mathbb{Q}\Sigma_{n+1}$ -modules given by left-multiplication by the element $(1 - A_{n+1})e_n^{(1)}$. Then

$$(1 - \Lambda_{n+1})e_n^{(1)} = e_n^{(1)}e_{n+1}^{(1)}x_{n+1}^{(1)} = (1 - \Lambda_{n+1})e_n^{(1)}e_{n+1}^{(1)}x_{n+1}^{(1)} = \theta(e_{n+1}^{(1)}x_{n+1}^{(1)}),$$

by Proposition 3.3. Thus, θ is surjective, and so an isomorphism, giving the result for j=1. Note that this identifies $E_{n+1}^{(1)}$ with the submodule $e_n^{(1)}(1 - A_{n+1})\mathbb{Q}\Sigma_{n+1}$ of $e_n^{(1)}\mathbb{Q}\Sigma_{n+1}$.

Now we assume the result for j-1 and consider j. Using the induction hypothesis it is sufficient to show that $F_{n+1}^{(j)} \oplus E_{n+1}^{(j)} \cong F_{n+1}^{(j-1)} \oplus Ind_{\Sigma_n}^{\Sigma_{n+1}} E_n^{(j)}$. That is,

$$\Lambda_{n+1}e_n^{(j)}\mathbb{Q}\Sigma_{n+1}\oplus E_{n+1}^{(j)}\cong F_{n+1}^{(j-1)}\oplus e_n^{(j)}\mathbb{Q}\Sigma_{n+1}$$

Now, we clearly have

$$e_n^{(j)} \mathbb{Q} \Sigma_{n+1} = \Lambda_{n+1} e_n^{(j)} \mathbb{Q} \Sigma_{n+1} \oplus (1 - \Lambda_{n+1}) e_n^{(j)} \mathbb{Q} \Sigma_{n+1},$$

so we must show that $E_{n+1}^{(j)} \cong F_{n+1}^{(j-1)} \oplus (1 - \Lambda_{n+1})e_n^{(j)}\mathbb{Q}\Sigma_{n+1}$. By Corollary 2.2, $E_{n+1}^{(j)} = F_{n+1}^{(j-1)} \oplus x\mathbb{Q}\Sigma_{n+1}$. Hence, the above simplifies to showing that $x\mathbb{Q}\Sigma_{n+1} \cong (1 - \Lambda_{n+1})e_n^{(j)}\mathbb{Q}\Sigma_{n+1}$ to be the homomorphism of right $\mathbb{Q}\Sigma_{n+1}$ -modules given by left-multiplication by $(1 - \Lambda_{n+1})e_n^{(j)}$. By Corollary 1.2, $(1 - \Lambda_{n+1})e_n^{(j)}\Lambda_{n+1}e_n^{(j-1)} = 0$, so $F_{n+1}^{(j-1)} \subset Ker \theta$. Hence, θ induces a $\mathbb{Q}\Sigma_{n+1}$ -module homomorphism: $\theta' : x\mathbb{Q}\Sigma_{n+1} \to (1 - \Lambda_{n+1})e_n^{(j)}\mathbb{Q}\Sigma_{n+1}$. Next, we check the dimensions of these $\mathbb{Q}\Sigma_{n+1}$ -modules. We have seen in Proposition 1.4 that $F_{n+1}^{(j)}$ restricts to $E_n^{(j)}$, so has the same dimension, s(n,j). So $x\mathbb{Q}\Sigma_{n+1}$ has dimension s(n+1,j)-s(n,j-1), and $(1 - \Lambda_{n+1})e_n^{(j)}\mathbb{Q}\Sigma_{n+1}$ has dimension (n+1)s(n,j)-s(n,j) = ns(n,j). Since s(n+1,j) = s(n,j-1) + ns(n,j), (see [4, p. 261, Eq. (6.8)], the two modules do have the same dimension. Hence, it is sufficient to show that θ' is surjective to conclude that it is a $\mathbb{Q}\Sigma_{n+1}$ -module isomorphism. But,

$$(1 - \Lambda_{n+1})e_n^{(j)} = e_n^{(j)}e_{n+1}^{(j)}x_{n+1}^{(j)}$$
 by Proposition 3.3
= $(1 - \Lambda_{n+1})e_n^{(j)}e_{n+1}^{(j)}x_{n+1}^{(j)}$ since $1 - \Lambda_{n+1}$ is an idempotent
= $\theta'(e_{n+1}^{(j)}x_{n+1}^{(j)}).$

Hence, θ' is surjective. \Box

Notation. Let Ψ_{n+1}^{j} denote the character of the representation $F_{n+1}^{(j)}$ of Σ_{n+1} and let χ_{n}^{j} denote the character of the representation $E_{n}^{(j)}$ of Σ_{n} .

Corollary 3.5.

$$\Psi_{n+1}^{j} = \sum_{i=1}^{j} Ind_{\Sigma_{n}}^{\Sigma_{n+1}}(\chi_{n}^{i}) - \sum_{i=1}^{j} \chi_{n+1}^{i}.$$

We give the formula for the character Ψ_{n+1}^1 explicitly.

316

Corollary 3.6. For $g \in \Sigma_{n+1}$,

$$\Psi_{n+1}^{1}(g) = \begin{cases} (-1)^{n+s}(s-1)!(r)^{s-1}\mu(r) & \text{if } g \text{ has cycle type } (r)^{s} \text{ with} \\ r > 1, \text{ or } (r)^{s}(1), \\ 0 & \text{if } g \text{ has any other cycle type} \end{cases}$$

Proof. We have shown that $\Psi_{n+1}^1 = Ind_{\Sigma_n}^{\Sigma_{n+1}}(\chi_n^1) - \chi_{n+1}^1$. The result is a straightforward induced character calculation from Hanlon's result: $\chi_n^1 = \varepsilon \cdot (Ind_{C_n}^{\Sigma_n} \rho_n)$, where ρ_n is a faithful linear character of the cyclic subgroup of Σ_{n+1} generated by an *n*-cycle and ε is the alternating character [5]. \Box

It is shown in [11] that this is exactly the character of the tree representation of Σ_{n+1} . This representation arises in Γ -homology, $H\Gamma_*$, a homology theory for E_{∞} -ring spectra, introduced by Robinson in [10], which specialises to a new homology theory for commutative algebras. Let *B* be a flat commutative algebra over a commutative ground ring *A* and *M* a *B*-module. An application of our results allows us to prove that when the ground ring *A* contains \mathbb{Q} , Γ -homology agrees with Harrison homology, $H\Gamma_p(B/A; M) \cong Harr_{p+1}(B/A; M)$. (In general, the theories are different.) Since the definition of Γ -homology is rather long, here we only outline the idea of the proof. The result was announced in [14] and will appear elsewhere.

There is a first quadrant spectral sequence converging to Γ -homology,

$$\varepsilon_{p,q}^{1} = M \otimes \operatorname{Tor}_{q}^{A\Sigma_{p+1}}(V_{p+1}, B^{\otimes p+1}) \Longrightarrow_{p} H\Gamma_{p+q}(B/A; M)$$

where V_{p+1} denotes the restriction to Σ_{p+1} of the tree representation of Σ_{p+2} . When A contains \mathbb{Q} the spectral sequence collapses to the edge and, by Proportion 1.4, V_{p+1} is isomorphic to $E_{p+1}^{(1)}$. Then Γ -homology is the homology of a complex

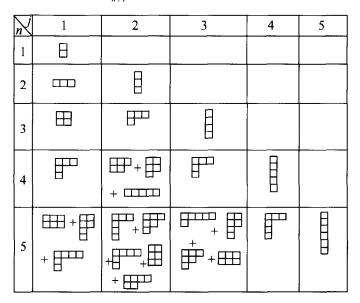
$$M\otimes E_{p+1}^{(1)}\otimes_{\Sigma_{p+1}}B^{\otimes p+1}$$

with a differential which can be identified as induced by the Hochschild boundary b. This gives the first part of the decomposition of Hochschild homology, namely Harrison homology.

The representation $F_{n+1}^{(1)}$ also occurs in the homology of partition lattices [12], the homology of configuration spaces [2, 7], and (up to sign) as the multilinear part of the free Lie algebra [1, 11].

4. Some results on decompositions

Table 1 lists the decompositions of the representations $F_{n+1}^{(j)}$ of Σ_{n+1} for n = 1, ..., 5and j = 1, ..., n. The first column gives $F_{n+1}^{(1)}$, the tree representation of Σ_{n+1} . The sum along the *n*th row of the table gives the representation $\Lambda_{n+1} \mathbb{Q} \Sigma_{n+1}$, the sign representation of $\langle \lambda_{n+1} \rangle$ induced to Σ_{n+1} . Table 1 Decompositions of $F_{n+1}^{(j)}$



For some values of j, it is possible to describe the decomposition of the representation $F_{n+1}^{(j)}$ into irreducible components. Let ω^{λ} be the irreducible character of the symmetric group Σ_{n+1} corresponding to a partition λ of n+1. Let a(T) denote the sum of ascents of a standard tableau T, that is the sum of those i such that i + 1 appears to the right of i in T. Then we denote by $\lambda(j,n)$, the number of standard tableaux Tof shape λ such that $a(T) \equiv j \pmod{n}$.

Proposition 4.1.

(1)
$$(j = 1)$$
 The multiplicity of ω^{λ} in Ψ_{n+1}^{l} is $\lambda(1,n) - \lambda(1,n+1)$,
(2) $(j = n-2) \Psi_{n+1}^{n-2} = \omega^{2^{2}1^{n-3}} \oplus \omega^{321^{n-4}} \oplus \omega^{3^{2}1^{n-5}} \oplus \omega^{51^{n-4}}$,
(3) $(j = n-1) \Psi_{n+1}^{n-1} = \omega^{31^{n-2}}$,
(4) $(j = n) \Psi_{n+1}^{n} = \omega^{1^{n+1}}$, and
(5) the multiplicity of ω^{λ} in the sum of characters $\sum_{j=1}^{n} \Psi_{n+1}^{j}$ is $\lambda(0, n+1)$.

Proof. (1) It is easily seen that T is a standard tableau for Σ_{n+1} such that $a(T) \equiv 1 \pmod{n}$ if and only if it is obtained from a standard tableau T' for Σ_n , with $a(T') \equiv 1 \pmod{n}$, by attaching n + 1 to the end of some row or column. Now in χ_n^1 , ω^{λ} has multiplicity the number of standard tableaux T' of shape λ for Σ_n such that $a(T') \equiv 1 \pmod{n}$ by a result of Kraskiewicz and Weyman [6] So in $Ind_{\Sigma_n}^{\Sigma_{n+1}}(\chi_n^1)$, ω^{λ} has multiplicity $\lambda(1, n)$. Since, $\Psi_{n+1}^1 = Ind_{\Sigma_n}^{\Sigma_{n+1}}(\chi_n^1) - \chi_{n+1}^1$, the result follows.

(2-3-4) These results follow directly from those of [5] for $\chi_n^{n-2}, \chi_n^{n-1}$ and χ_n^n . That is, for j = n - 2, n - 1, n, the decomposition of Ψ_{n+1}^j given above is the only one

which will restrict back to give the correct decomposition of χ_n^i . (Of course, in the case j = n, we have $f_{n+1}^{(n)} = \Lambda_{n+1} \varepsilon_n = \varepsilon_{n+1}$, where $\varepsilon_n = \frac{1}{n!} \sum_{\pi \in \Sigma_n} (sgn \pi)\pi$, and we see directly that we have the sign representation.)

(5) We have seen that this sum of characters is just the sign character of $\langle \lambda_{n+1} \rangle$ induced to Σ_{n+1} . The formula for the decomposition can be deduced from the work of Stembridge [13]. \Box

We also give the relationship between our characters and the trivial character.

Proposition 4.2. The trivial character ω^{n+1} appears only in $\Psi_{n+1}^{n/2}$ if n is even and does not appear in any Ψ_{n+1}^i if n is odd.

Proof. Let $e_{n+1} = \frac{1}{(n+1)!} \sum_{\pi \in \Sigma_{n+1}} \pi$. It is easily checked that

$$\Lambda_{n+1}e_{n+1} = \begin{cases} e_{n+1} & \text{if } n \text{ is even,} \\ 0 & \text{if } n \text{ is odd.} \end{cases}$$

Hence, the trivial representation does not appear in $\Lambda_{n+1} \mathbb{Q}\Sigma_{n+1}$ when *n* is odd. When *n* is even it appears once, and this must be in $\Lambda_{n+1}e_n^{(n/2)}\mathbb{Q}\Sigma_{n+1}$, since Hanlon shows that the trivial representation of Σ_n always appears in $e_n^{([(n+1)/2])}\mathbb{Q}\Sigma_n$. \Box

Corollary 4.3. The character ω^{n1} does not appear in any Ψ_{n+1}^{i} if n is even and appears only in $\Psi_{n+1}^{(n+1)/2}$ if n is odd.

Proof. The irreducible character ω^{n1} of Σ_{n+1} is the only one apart from ω^{n+1} which gives a copy of the trivial character of Σ_n on restriction. Hence, the result follows from the above. \Box

Acknowledgement

I acknowledge the financial support of the Science and Engineering Research Council for some of the period when this work was carried out.

References

- H. Barcelo, On the action of the symmetric group on the free Lie algebra and the partition lattice, J. Combin. Theory Ser. A 55 (1990) 93-129.
- [2] F.R. Cohen and L.R. Taylor, On the representation theory associated to the cohomology of configuration spaces, in: Algebraic Topology (Oaxtepec, 1991), Contemporary Mathematics, Vol. 146 (American Mathematical Society, Providence, RI, 1993).
- [3] M. Gerstenhaber and S.D. Schack, A Hodge-type decomposition for commutative algebra cohomology, J. Pure Appl. Algebra 48 (1987) 229-247.
- [4] R. Graham, D. Knuth and O. Patashnik, Concrete Mathematics (Addison-Wesley, Reading, MA, 1994).
- [5] P. Hanlon, The action of Σ_n on the components of the Hodge decomposition of Hochschild homology, Mich. J. Math. 37 (1990) 105–124.

- [6] W. Kraskiewicz and J. Weyman, Algebra of coinvariants and the action of Coxeter elements, Torun preprint, 1985.
- [7] G.I. Lehrer and L. Solomon, On the action of the symmetric group on the cohomology of the complement of its reflecting hyperplanes, J. Algebra 104 (1986) 410-424.
- [8] J.-L. Loday, Cyclic Homology (Springer, Berlin, 1992).
- [9] T. Natsume and S.D. Schack, A decomposition for the cyclic cohomology of a commutative algebra, J. Pure Appl. Algebra 61 (1989) 273-282.
- [10] C.A. Robinson, Γ-homology 1, in preparation.
- [11] C.A. Robinson and S.A. Whitehouse, The tree representation of Σ_{n+1} , J. Pure Appl. Algebra 111 (1996) 245–253.
- [12] R.P. Stanley, Some aspects of groups acting on finite posets, J. Combin. Theory Ser. A 32 (1982) 132-161.
- [13] J. Stembridge, On the eigenvalues of representations of reflection groups and wreath products, Pacific J. Math. 140 (1989) 353-396.
- [14] S.A. Whitehouse, \[Gamma]-(co)homology of commutative algebras and some related representations of the symmetric group, Ph.D. thesis, University of Warwick, 1994.